A Method of Highspeed Similarity Retrieval based on Self-Organizing Maps

자기 조직화 맵 기반 유사화상 검색의 고속화 수법

  • 오군석 (조선대학교 컴퓨터공학부) ;
  • 양성기 (조선대학교 전산통계학과) ;
  • 배상현 (조선대학교 전산통계학과) ;
  • 김판구 (조선대학교 컴퓨터공학부)
  • Published : 2001.10.01

Abstract

Feature-based similarity retrieval become an important research issue in image database systems. The features of image data are useful to discrimination of images. In this paper, we propose the highspeed k-Nearest Neighbor search algorithm based on Self-Organizing Maps. Self-Organizing Map(SOM) provides a mapping from high dimensional feature vectors onto a two-dimensional space. A topological feature map preserves the mutual relations (similarity) in feature spaces of input data, and clusters mutually similar feature vectors in a neighboring nodes. Each node of the topological feature map holds a node vector and similar images that is closest to each node vector. We implemented about k-NN search for similar image classification as to (1) access to topological feature map, and (2) apply to pruning strategy of high speed search. We experiment on the performance of our algorithm using color feature vectors extracted from images. Promising results have been obtained in experiments.

특징정보를 기반으로 한 유사화상 검색은 화상 데이터베이스에 있어서 중요한 과제의 하나이다. 화상 데이터의 특징정보를 각 화상을 식별하는데 유용한 정보이다. 본 논문에서는 자기조직화 맵기반의 고속 k-NN 탐색 알고리즘을 제안한다. 자기조직화 맵은 학습을 통하여 고차원 특징벡터를 2차원 공간에 맵핑함으로서 위상 특징맵을 생성한다. 위상 특징맵은 입력 데이터의 특징공간의 상호간의 유사성을 가지고 있으며, 각 노드는 노드벡터와 각 노드벡터에 가장 가까운 유사화상이 분류된다. 이러한 자기조직화 맴에 의한 유사화상 분류결과에 대한 k-NN 탐색을 구현하기 위한여, (1) 위상특징 맵에 대한 접근방법, (2) 고속탐색을 위한 pruning strategy의 적용을 실현하였다. 본 연구에서는 실험을 통하여 실제화상으로부터 추출한 색상 특징을 사용하여 제안한 알고리즘의 성능을 평가함으로써 유사화상 검색에 유효한 결과를 얻을 수 있었다.

Keywords

References

  1. Guido Deboeck, and Teuvo Kohonen : Visual Explorations in Finance with Self-organizing Maps, Springer-Verlag, London, 1998
  2. Kohonen, T. : Self-Organizing Maps, Series in Information Science, Vol.30, Springer-Verlag, second edition, Berlin, 1997
  3. Baba, N., Kojima F., and Ozawa M. : Basis and Application of Neural Network, Kyoritu Shuppan, Tokyo, Japan, 1994
  4. Kohonen, T., Hynninen, J., and Laaksonen, J. : SOM_PAK : The Self-Organizing Map Program Package, In Technical Report A31, Helsinki University of Technology, Laboratory of Computer and Information science, 1996
  5. Gudivada, V. N.and Raghavan, V. V. eds. : Content-based Image Retrieval System, IEEE Computer, Vol.28, No.9, pp.18-22, 1995 https://doi.org/10.1109/2.410145
  6. Flickner, M. et al. : Query by image and Video Content : The QBIC System, IEEE Computer, Vol.28, No.9, pp.23-32, 1995 https://doi.org/10.1109/2.410146
  7. Faloutsos, C. et al. : Efficient and Effective Query by Image Content, J. Intell. Inform. Syst., Vol.3, pp.231-262, 1994 https://doi.org/10.1007/BF00962238
  8. Eakins, J. P. and Graham, M. E. : Content-based image retrieval. Report to the JISC Technology Applications Programme, 1999
  9. Rui, Y., Huang, T. and Chang S-F. : Image Retrieval : Current Techniques, Promising Directions, and Open Issues, JVCIR, Vol.10, No.1, pp.39-62, 1999 https://doi.org/10.1006/jvci.1999.0413
  10. N. Roussopoulos, S. Kelly, and F. Vincent. 'Nearest neighbor queries,' In Proceedings of the ACM SIGMOD Conference, pp.71-79, San Jose, CA, 5. 1995
  11. Yong Rui, Thomas S. Huang, Michael Ortega, and Sharad Mehrotra, 'Relevance Feedback : A Power Tool in Interactive Content-Based Image Retrieval,' IEEE Trans. on Circuits amd Systems for Video Technology, Special Issue on Segmentation, Description, and Retrieval of Video Content, Vol.8, No.5, pp.644-655, 1998 https://doi.org/10.1109/76.718510
  12. Mallat, S. G. : Multifrequency channel decompositions of images and wavelet models, IEEE Trans., Acoust.,Speech and Signal Proc., Vol.37, No.12, pp.2091-2110, 1989 https://doi.org/10.1109/29.45554
  13. Niblack, W. et al. : The QBIC project : Query Image by content using color, texture and shape, SPIE, San Joes, pp.173-187, 1993
  14. Smith, J.R. and Chang, S-F. : VisualSEEK : A Fully Automated Content-Based Image Query System, Proc. ACM Intl. Conf. on Multimedia, Boston, pp.87-98, 1996 https://doi.org/10.1145/244130.244151
  15. Pentland, A., Picard, R. W. and Schlaroff, S. : Photobook : Tools for Content-Based Manupulation of Image Databases, SPIE II, San Joes, pp.34-47, 1994 https://doi.org/10.1117/12.171786
  16. Jacobs, C. E., Finkelstein, A. and Salesin, D. H. : Fast multiresolution Image Querying, Proc. SIGGRAPH95, Los Angeles, California, pp.6-11, 1995
  17. W. Y. Ma, 'NETRA : A Toolbox for Navigating Large Image Databases,' Ph.D. Dissertation, Dept. of Electrical and Computer Engineering, University of California at Santa Barbara, 1997
  18. Laaksonen, J., Koskela, M. and Oja, E. : Application of Tree Structured Self-Organizing Maps in Content-Based Image Retrieval, Proc. ICANN'99, Edinburgh, UK. September 1999 https://doi.org/10.1049/cp:19991104
  19. Koikkalainen, P., : Progress with the Tree-Structured Self-Organizing Map, Proc. ECAI'94, (Cohn, A.(ed.)), John Wiley & Sons, pp.211-215, 1994