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2-D Conditional Moment for Recognition
of Deformed Letters'
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Abstract In this paper we propose a new scheme for recognition of deformed letters by extracting
feature vectors based on Gibbs distributions which are well suited for representing the spatial continuity.
The extracted feature vectors are comprised of 2-D conditional moments which are invariant under
translation, rotation, and scale of an image. The Algorithm for pattem recognition of deformed letters
contains two parts’ the extraction of feature vector and the recognition process. (i) We extract feature
vector which consists of an improved 2-D conditional moments on the basis of estimated conditional
Gibbs distribution for an image. (i) In the recognition phase, the minimization of the discrimination cost
function for a deformed letters determines the corresponding template pattern. In order to evaluate the
performance of the proposed scheime, recognition experiments with a generated document was conducted.
on Workstation. Experiment results reveal that the proposed scheme has high recognition rate over 96%.

1. Introduction

An essential issue in the field of pattern analysis is
the recognition of objects and characters regardless of
their positions, size, and orientations. In the recent
computer vision literature there has been increasing
interest in use of statistical techniques for recognition
and processing image data. Statistical image analysis
concerns the measurement of quantitative information
from an image to produce a probabilistic description. A
feature-based recognition of objects or patterns
independent of their position, size, orientation and the
other variations has been the goal of ongoing research.
Finding efficient invariant features is the key to
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solving this problem. In other words, selection

of "good” features is a crucial step in the process.

"Good” features are those satisfying the following

requirements: (i) small interclass invariance, and (ii)

large interclass separation. These features (or shape

descriptors) may be divided into five groups as

follows{1, 2

® Visual features(edges, texture and shape);

® Transform coefficient features(Fourier descriptors or
Hadamard coefficients);

® Algebraic features(based on matrix decomposition of
an image);

@ Differential invariant features(used especially for curved
objects)

@ Statistical features(moments invariants).

Moments and functions of moments have been

extensively employed as the invariant global features of

an image in pattern recognition, image classification,
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target identification, and scene analysis[3, 4] Generally,
these features are invariant under image translation,
rotation, scale change, and rotation only when they are
computed from the original non-distorted analog two
dimensional image. The moment invariants are very
useful features for pattern recognition. Tsirikolias,
Shen, and Arezki proposed moments that provide
features for recognition of patterns have been used for
a number of image classifying applications[l, 5, 6]
However, their performance for pattern recognition is
poor since the moments did not included spatial
information which is the characteristic of the most
images.

In order to overcome the drawback of their pattern
recognition methods, we propose a new scheme for
moment-based recognition of a deformed ietters using
the spatial information based on Gibbs random field
(GRF). Gibbs random fields are well suited for
representing statistical dependence(or spatial continuity)
of the pixel value at a lattice point on the those of its
neighbors[5, 6]. The proposed a new scheme contains
two parts: feature extraction and pattern recognition.
First of all, we estimate the parameters of Gibbs
random fields to model a pattern image. And then we
extract feature vector which consists of the calculated
2-D conditional moments. In the recognition phase, the
minimization of the discrimination cost function for a
deformed letter determines the corresponding template
pattern. )

2. Gibbs Distributed Image

In this section, we present a particular class of Gibbs
distribution(GD) which is suited for describing the
deformed letters and estimate the parameters of Gibbs
distributed for a deformed letter image. We focus our
attention on discrete 2-D random fields defined over a
finite AN X2, rectangular lattice of points(pixels)
defined as L= {(x, ») :1<x<N,,I1<y<N,}.

Suppose Q= {g,} represents an image, where ¢,
measures the grey-level(or intensity) of the pixel in
the x—th row and y—th colun. Let » be
neighborhood system defined over the finite L. A
random field @={Q,} on L has Gibbs distribution or

equivalently is a Gibbs Random Field(GRF) with
respect to 7 if and only if its joint distribution is of the
form{7, 8]

exp {— Energy function}
{ Partition function}

PQ=g=
e}

Zq:exp{—E(q)}

~ exp{— ;CVC(q)}

where ¢ is a clique, and C is the set of all cliques of
a lattice-neighborhood pair (L,7) and Vg is the
potential associated with clique ¢, arbitrary except for
the fact that it depends only on the restriction of ¢ to
¢. Let 7™ be the mith order neighborhood system
The GD characterization in some applications provides
a more workable spatial model. We assume that the
random field @ consists of binary-valued discrete
random variables {@,,} taking values in 2= {w;, ws}
To define GD it suffices to specify the neighborhood
systemy, the associated cliques, and the clique
potentials V.(g)'s. Assume that the random field is

homogeneous.

[EP, A1l [EI]. Bal, [Bj. 71l [ED, 721,
[EB, 73l [EB, 74l [H}, &l

<Figure 1> The parameters associated with clique
types.

The distribution is specified in terms of the second
order neighborhood system 7. Figure 1 shows the
parameters associated with clique types, except for the
single pixel clique. The clique potentials associated
with #? are defined as follows

if all g,'s in ¢ are equal @
otherwise

Ve ={; *

where ¢ is the parameter specified for the clique type
c. For the single pixel cliques, the clique potential is
defined as
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Vlay) =a; for q.,=w, 3
The parameters @, control the percentage of pixels in
each site, that is the marginal distribution of the single
random variables Q,'s, while the other parameters
control the size and direction of clustering.

3. Conditional Moment and
Classification

In this section, we describe a method for estimating
parammeter of Gibbs distributed image. And then we
extract feature vector which consists of the calculated
2-D conditional moments. These feature vectors are
invariant under image translation, rotation, size, and
rotation. Finally, We propose a discrimination distance
function which recognize a deformed letter.

3.1 Parameter Estimation

In this subsection our aim is to estimate the
parameters of Gibbs distributed image. The most
commonly used parameter estimation method to date is
the so-called “coding method” first presented by
Besag[9). It requires the solution of a set of nonlinear
equations. Therefore, it is cumbersome and difficult to
use reliably. In view of the practical difficulties
involved in using the coding method [10, 11}, we
describe an alternative parameter estimation scheme for
finite range space GRF, which consists of
histogramming and a standard, linear, least squares
estimation as its components. Suppose & is a GD
with a discrete range spece of 2= {w;, @} A
reglization ¢ of this random field is available to be
used in estimating the parameters of the distribution.
For convenience of notation, let s represent q,, and £

represent the vector of the neighboring values of g,
that is, £=[u;, wupus, uy, v, vy, vs, veMbhere
the location of #;/s and v;'s with respect to s are

shown in Figure 2.

<Figure 2> q,, and 7,.

We define indicator functions

—1 if R =Ry=rr=2,
1(21,22,...,Zk)={ (4)
1 otherwise

and
-1 s=w,

]m(s)={ 6)
0 other wise.

We can express the potential functions of the GD in
terms of these quantities. Let V(s, ¢, 6)be the sum
of the potential functions of all the cliques that contain
(x, y) the site of s. That is V(s,£,0) =2 csec
V(g where @ is the parameter
0=C(a,, az, B, Barr. 72. 73 74 &). Using the
clique potentials for this class of GD we can write
Ws, £, Oas Vs, £, O=p%s, £) § where

vector

o(s, D =111(9), J(s),

(s, vg) + K(s, vp), (Ks, 1) + Ks, v3)),

(Ks, uy, v3) + I(s, ug uz) + I(s, uy vy),

(I(s, uy, uz) + Ks, ug uz) + I(s, uy vy)),
(Ks, up, v1) + Ks, uy ug) + (s, uz v3)), ©

(s, uy, ug) + K, ug vy) + Ks, uz v)),

(I(s, uy, vy, up) + K(s, uy, vy, uy)

+ (s, w3 vs, ug) + I(s, uy, vy, u,))] 7

Now Suppose P(sf) is the joint distribution of the
random variables on the 3X3 window centered at
(x,y) and P(f) is the joint distribution of the
random variables on 7, only. Then the conditional
distribution P(sf) is given by the ratio of P(s,t)
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to P(f). It follows from the GRF-MRF equivalence
and the resulting local characteristic that

e—V(s.i.ﬂ) _ Zt"g @
P(s, f) P()
where Z(f,0) is the appropriate normalizing constant..
Note that the right-hand side of (7) is independent of
s. Considering the left-hand side of (7) for any two
distinct values of s, eg., s=jand s=% we have

(o(k, £)—~p(j, E))T0= ln%fe‘—t)l ®

where o"(k, £)6= V(k, £,6)

Consideration of all possible triplets (/, &, ), <k
generates from equation (8) a large set of linear
equations, which may be solved for ¢ by least squares
procedures. The question that remains to be answered ,
now, is how to determine or estimate P(s,¢) for all
(s, f) combinations using a single or a few
realizations. We will calculate the probability P(s, £)
using histogram techniques.

3.2 Calculation of 2-D Conditional
Moments

The basic and classical moment, a regular 2-D
moment of order (k+ J)is defined by[l, 8]

oo o0

= v Rx, ), )]

where Ax, y)is the intensity at a point (x, y) in the
image and &, /=0,1,2,--The moments proposed by
many researchers(l, 6, 8 12] have not included spatial
information which is the characteristic of most images.
An an alternative to cope with the drawback of the
moments, we propose 2-D conditional moments which
include spatial information by using the estimated
conditional Gibbs distribution. The corresponding 2-D
conditional moments are given by the following steps.

@ Stepl) Calculate the centroids x, v of the considered
shape as follows.

% P(Qy=aylnyy)

By

x=1

N, N,
-2 2
=1

and

N, N,
y = yg yP(Qy=aylny) (10)

1 x=1

where P(Q,=4g,, |7,) is estimated conditional

probability of the site (x,)

@ Step?) Calculate the standard deviation o, and o,

N, N, —
0 = [ {3 Z- D P(@o=aslr)
(1n

N, N, —
0 = | (3 2= P@y=aslre)).

® Step3) Calculate and Store the 2-D conditional
moments for (&, ))

N, N, _
mpy = z:: Z(x x/dx (y— Y/Gy)l
X P(Qy=ay 17, (12

The required number of moments depends on: (i) the
level of the existing noise on the application and (i)
the form of the considered shapes. The above moments
are invariant under translation, magnification, and
rotation of the image, but not under rotation. Thus, in
order to use them as feature vector in recognition
phase, we have to normalize respect to the rotation.
The normalization is a simple operation, since only a
multiplication of the coordinates of the image by e ’*
where ¢ is the rotation change of the object. Table 1
shows the normalized 2-D conditional moments for
template letter A and D of Figure 3.

<Table 1> The proposed moments of each letters

Moments my |(my |mm |mg |mp | mg
Template

‘A’ 1.02 | 265 | 1.29 1 411 | 397 | 708
Template

D’ 101 | 244 | 101 | 204 | 1.08 | 572
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Morments mg my s Mg my mg
Template

‘A’ 111 ({292 {102 | 300 | 159 { 308
Template

D =110} 320 [-1.93] 420 | 291 | 7TH

AECD

EFGH
I JKL

V(] AN

ke~
EImG
ﬁE“

(b) the letters to be recognized
<Figure 3> The template and the deformed letters

3.3 Classification

In order to classify deformed letters, we define a

the discrimination cost function (DCF) F(i,v)
which is defined by
F(i,v)= g [T,—U;? a3)

where T',; denotes the j—th feature of the v—th

template, U, denotes the j— thieature of the i—th
shape under consideration and 4 is the dimension of
the feature vectors. The minimization of the index
F(i,v) v=1,2,.for a specific deformed letter i
determines the corresponding template v.

The proposed DCF is a kinds of Euclidean distance

between an arbitrary pattern vector U; and the v—th
prototype vector T ;. Furthermore, since the proposed

DCF only require some simple analytic algebraic
calculations, it is characterized by low computation
cost. The ideal discrimination of a deformed Iletter
corresponding exactly to a template, without any noise
and computational error, the index F(7,v) should be
zero. However, in practice, the discrimination is clear if
F(i,v) is sufficiently smaller in comparison with the
other templates, as well as small encugh itself. Table
2 shows the discrimination functions of the letters of
Fig. 4. It is seen that F(7, v) is sufficiently smaller for
the deformed letter "A” in Table 2.

<Table 2> The DCF for deformed letter A

Fltemplate “A”, deformed Letter "A”) = 407
Fltemplate "A”, deformed letter "F’) = 79.28

4. Experimental Results

In order to illustrate the performance of the proposed

moment for deformed letter recognition, we carried out
the following experiments was carried out. In this
setting, the generated training document consists of 10
lines of 52 alphabetic characters each. Two documents
were created for testing the performance of the
proposed classification method on the basis of the
extracted feature vector. Each document consists of 24
lines 52 characters each. Figure 4 shows the overall
block diagram of the proposed method for classification
of patterns, where it is shown that a document to be
processed is at first scanned Then the classification
feature vectors are extracted by formulae (10) through
(12). These features are sent to a classifier, which is
described by forrmula' (13), for a decision in order to
identify the input character.

Unknown Feature
————— | Scanner § —% ~—» |Classifier
Input Pattern Extractor

. W Mlan{l, v)

Reference
Moments

<Figure 4> Overview of the proposed scheme for
classifying of the deformed letters

Decision
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The gross struchural features of the shape can be
better characterized by the proposed moments derived
from the silhouette. In our experiments we use only
silhouette moments since these moments are less
sensitive to noise. The used feature vector F, for the
templates is considered to be F,=[mygy, my, mgy,
Mg, Mg, Mg, my, mg, mp, Mg, my, myl

A classification simulation was run six times. The
first simulation used a library set of 52 feature vectors
derived from the first line of characters of the training
document. The second simulation used two library sets
derived from the first two lines of the training
docurment. The third, fourth, fifth and sixth sirulations
used four, six, eight and ten library sets, respectively.
The classification rates resulting from these simulations
are presented in Table 3. As Table 3 reveals, we can
achieve better than 96% increase in classification rates
when we use eight or ten library sets. Since the
proposed the 2-D improved moments have properties of
the affine or geometric moments, as well as spatial
information which describe dependance between pixels,
our proposed method was superior to otner methods
using the affine moments(12] and the geometric
moments[8], respectively.

<Table 3> The recognition rates

Noof | Flusser's method | Tsirikolias’s method| Proposed method
s e i i g 5D
moments (9) [g] | moments (%) [12]

1 L] 7 8

2 825 81 ]

4 8 8 28

6 05 8 %

8 B 9l %

10 % 95 B5

In our method, the incorrected classification of the
deformed letters is caused by the insufficient clique
function V(s, ¢, 6) described in equation (6). Since
the clique parameter vector @ is a measure which is
the strength of interaction between pixels, the clique
potentials V(s, ¢, ) affect the Gibbs distribution
P(Qy=ay | 7,) which is used in calculation the
proposed conditional moments depends only the clique
function. In other words, The success of classification

depends on how good the used the clique parameter 9
fits characteristic of the image. So, we will focus our
efforts on further development of the clique functions
in order to improve recognition of the deformed letters.

5. Concluding Remarks

In this paper we propose a new algorithm for pattem
recognition for the deformed letters using an improved
2-D conditional moments based on GD. Experiment
results reveal that the proposed scheme has high
classification rate over 96%. The proposed method
appears to be efficient with respect to the existing
ones, since it shares the following advantages. (i) The
discrimination process is invariant under translation,
scaling and rotation of the considered shape. (i) Fast
processing, since calculations of the moment are
simple. (iii} Each shape is uniquely described

The success of pattern classification depends on how
good the used clique parameter 9 fits characteristic of
the image. Upon conpletion of the pattemn
classification, we will focus our efforts on further
development of the clique functions.
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