• Title/Summary/Keyword: Feature Discrimination

Search Result 172, Processing Time 0.023 seconds

An Application of Wavelet Transform to Power Transformer Protection (전력용 변압기 보호를 위한 Wavelet변환의 적용)

  • Park, C.W.;Kwon, M.H.;Lee, J.J.;Jung, H.S.;Shin, M.C.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.467-469
    • /
    • 2000
  • This paper describes an application of discrete wavelet transform for power transformer protection. It is shown that the moving wavelet coefficients method based feature extraction for discrimination between actual internal faults and energizing state. The simulations of power transformer have been carried out using EMTP. The proposed method is more effectively and simpler to distinguish internal faults from inrush currents.

  • PDF

ANALYSIS ON THE INFLUENCE OF XPD IN DUAL-POLARIZED TRANSMISSION

  • Park, Durk-Jong;Ahn, Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.784-787
    • /
    • 2006
  • Dual-polarized transmission is one of the effective methods to transmit such a high speed data thanks to two independent channel leads to the orthogonal feature between RHCP (Right-Hand Circular Polarization) and LHCP (Left-Hand Circular Polarization). However, in practical case, the transmitted signal by RHCP polarized antenna in satellite can be occurred at the output port of LHCP polarized antenna in ground station, vice versa. XPD (Cross-Polarization Discrimination) is the ratio of the signal level at the output of a receiving antenna that is nominally co-polarized to the transmitting antenna to the output of a receiving antenna of the same gain but nominally orthogonally polarized to the transmitting antenna. In this paper, the detailed estimation of XPD within the interface between satellite and ground station is written and the influence of XPD to link performance is also described.

  • PDF

Face recognition by PLS

  • Baek, Jang-Sun
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.10a
    • /
    • pp.69-72
    • /
    • 2003
  • The paper considers partial least squares (PLS) as a new dimension reduction technique for the feature vector to overcome the small sample size problem in face recognition. Principal component analysis (PCA), a conventional dimension reduction method, selects the components with maximum variability, irrespective of the class information. So PCA does not necessarily extract features that are important for the discrimination of classes. PLS, on the other hand, constructs the components so that the correlation between the class variable and themselves is maximized. Therefore PLS components are more predictive than PCA components in classification. The experimental results on Manchester and ORL databases show that PLS is to be preferred over PCA when classification is the goal and dimension reduction is needed.

  • PDF

Seafloor Classification Based on the Texture Analysis of Sonar Images Using the Gabor Wavelet

  • Sun, Ning;Shim, Tae-Bo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.3E
    • /
    • pp.77-83
    • /
    • 2008
  • In the process of the sonar image textures produced, the orientation and scale factors are very significant. However, most of the related methods ignore the directional information and scale invariance or just pay attention to one of them. To overcome this problem, we apply Gabor wavelet to extract the features of sonar images, which combine the advantages of both the Gabor filter and traditional wavelet function. The mother wavelet is designed with constrained parameters and the optimal parameters will be selected at each orientation, with the help of bandwidth parameters based on the Fisher criterion. The Gabor wavelet can have the properties of both multi-scale and multi-orientation. Based on our experiment, this method is more appropriate than traditional wavelet or single Gabor filter as it provides the better discrimination of the textures and improves the recognition rate effectively. Meanwhile, comparing with other fusion methods, it can reduce the complexity and improve the calculation efficiency.

Iris Recognition using Multi-Resolution Frequency Analysis and Levenberg-Marquardt Back-Propagation

  • Jeong Yu-Jeong;Choi Gwang-Mi
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.3
    • /
    • pp.177-181
    • /
    • 2004
  • In this paper, we suggest an Iris recognition system with an excellent recognition rate and confidence as an alternative biometric recognition technique that solves the limit in an existing individual discrimination. For its implementation, we extracted coefficients feature values with the wavelet transformation mainly used in the signal processing, and we used neural network to see a recognition rate. However, Scale Conjugate Gradient of nonlinear optimum method mainly used in neural network is not suitable to solve the optimum problem for its slow velocity of convergence. So we intended to enhance the recognition rate by using Levenberg-Marquardt Back-propagation which supplements existing Scale Conjugate Gradient for an implementation of the iris recognition system. We improved convergence velocity, efficiency, and stability by changing properly the size according to both convergence rate of solution and variation rate of variable vector with the implementation of an applied algorithm.

Surface Feature Detection Using Multi-temporal SAR Interferometric Data

  • Liao, Jingjuan;Guo, Huadong;Shao, Yun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1346-1348
    • /
    • 2003
  • In this paper, the interferometric coherence was estimated and the amplitude intensity was extracted using the repeat-pass interferometric data, acquired by European Remote Sensing Satellite 1 and 2. Then discrimination and classification of surface land types in Zhangjiakou test site, Hebei Province were carried out based on the coherence estimation and the intensity extraction. Seven types of land were discriminated and classified, including in two different types of meadows, woodland, dry land, grassland, steppe and water body. The backscatter and coherence characteristics of these land types on the multi-temporal images were analyzed, and the change of surface features with time series was also discussed.

  • PDF

Feature extraction of waveforms for discrimination of PD sources in air (공기 중 부분방전원 식별를 위한 UWB신호파형의 특징추출)

  • Lee, K.W.;Park, S.H.;Kim, K.S.;Kang, S.H.;Lim, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.203-205
    • /
    • 2002
  • 기존 부분방전검출법에서는 수십$\sim$수백MHz의 주파수 영역에서 부분방전신호를 관찰하였기 때문에 각 부분방전원별 발생신호파형의 특징을 효율적으로 추출할 수 없었다. 본 논문에서는 수십$\sim$수백MHz의 넓은 주파수대역(UWB)에서 부분방전신호를 관찰하여 각 부분방전원별 신호파형의 특징을 추출한 후 이러한 특징을 토대로 부분방전원을 구별하였으며, 상당히 좋은 분류결과를 보였다.

  • PDF

Application of Random Forests to Assessment of Importance of Variables in Multi-sensor Data Fusion for Land-cover Classification

  • Park No-Wook;Chi kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.3
    • /
    • pp.211-219
    • /
    • 2006
  • A random forests classifier is applied to multi-sensor data fusion for supervised land-cover classification in order to account for the importance of variable. The random forests approach is a non-parametric ensemble classifier based on CART-like trees. The distinguished feature is that the importance of variable can be estimated by randomly permuting the variable of interest in all the out-of-bag samples for each classifier. Two different multi-sensor data sets for supervised classification were used to illustrate the applicability of random forests: one with optical and polarimetric SAR data and the other with multi-temporal Radarsat-l and ENVISAT ASAR data sets. From the experimental results, the random forests approach could extract important variables or bands for land-cover discrimination and showed reasonably good performance in terms of classification accuracy.

Multi-scale Local Difference Directional Number Pattern for Group-housed Pigs Recognition

  • Huang, Weijia;Zhu, Weixing;Zhang, Zhengyan;Guo, Yizheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3186-3203
    • /
    • 2021
  • In this paper, a multi-scale local difference directional number (MLDDN) pattern is proposed for pig identification. Firstly, the color images of individual pig are converted into grey images by the most significant bits (MSB) quantization, which makes the grey values have better discrimination. Then, Gabor amplitude and phase responses on different scales are obtained by convoluting the grey images with Gabor masks. Next, by calculating the main difference of local edge directions instead of traditionally edge information, the directional numbers of Gabor amplitude and phase responses are encoded. Finally, the block histograms of the encoded images are concatenated on each scale, and the maximum pooling is adopted on different scales to avoid the high feature dimension. Experimental results on two pigsties show that MLDDN impressively outperforms the other widely used local descriptors.

Intelligent Activity Recognition based on Improved Convolutional Neural Network

  • Park, Jin-Ho;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.6
    • /
    • pp.807-818
    • /
    • 2022
  • In order to further improve the accuracy and time efficiency of behavior recognition in intelligent monitoring scenarios, a human behavior recognition algorithm based on YOLO combined with LSTM and CNN is proposed. Using the real-time nature of YOLO target detection, firstly, the specific behavior in the surveillance video is detected in real time, and the depth feature extraction is performed after obtaining the target size, location and other information; Then, remove noise data from irrelevant areas in the image; Finally, combined with LSTM modeling and processing time series, the final behavior discrimination is made for the behavior action sequence in the surveillance video. Experiments in the MSR and KTH datasets show that the average recognition rate of each behavior reaches 98.42% and 96.6%, and the average recognition speed reaches 210ms and 220ms. The method in this paper has a good effect on the intelligence behavior recognition.