• Title/Summary/Keyword: FeRB

Search Result 85, Processing Time 0.028 seconds

Element Mobility during the Weathering of Granitic Gneiss in the Yoogoo Area, Korea. (유구지역 화강암질 편마암의 풍화작용에 따른 원소의 거동)

  • 이석훈;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.39-51
    • /
    • 2001
  • 공주군 유구면 일대의 화강암질 편마암의 풍화작용에 따른 원소의 거동과 pH와 이차광물과의 관계를 XRF, ICP-AES, ICP-MS를 이용한 원소분석결과를 통하여 검토하였다. 이 지역의 암석은 pH6 내외의 산성환경, 침철석, 아나타제와 같은 다양한 이차광물을 생성하면서 심각한 화학조성의 변화를 초래했다. 주원소의 화학조성을 이용한 풍화지수는 토양층에서 79~88로 모암 중의 사장석이 용해되고 흑운모가 변질되어 캐올리광물의 생성이 활발한 방향으로 풍화작용이 진행되었다. 지표층으로 가면서 Al에 대한 주 원소의 거동은 Si, Ca, Na, K, P가 감소하고 Fe, Ti, Mn이 증가하는 경향을 보이며 pH가 낮은 풍화단면에서 주 원소의 변화량이 더 크다. 이 풍화대에서 Mg은 거의 일정하다. Li, As 모든 전이원소는 pH가 감소함에 따라 증가하며 특히 이들 원소는 Fe의 함량과 비례해서 증가해 침철석과 공침하였거나 표면에 흡착되어 있는 것으로 보인다. Ga은 Fe와 비례하기는 하지만 변화량은 전 풍화단면에서 일정하다. Zr, Mo, Sn, Cd은 pH에 변화에 상관없이 일정한 반면에 Rb, Sr, Ba, Y, Pb, Th, U 등은 감소하는 경향을 보인다. 특히 Rb 과 Sr은 Ca에 비례해서 감소한다. 희토류원소는 전 풍화단면에서 감소하는 경향을 보이는데 $Al_2$$O_3$에 대한 상대적인 변화량을 보면 경희토류원소는 사프롤라이트(saprolite)하부와 상부에서 부화되어 있고 중부 사프롤라이트와 토양층에서 감소하는 반면에 중희토류원소는 사프롤라이트 하부와 상부에서 감소하고 중부사프롤라이트 및 토양층에서 부화되는 경향을 보인다. 전반적으로 희토류원소의 원자번호가 클수록 손실율이 커진다. 이 풍화단면에서 원소의 거동은 각 풍화층의 pH와 생성된 이차광물의 조성에 지배를 받았다.

  • PDF

Geochemistry of the Major and Trace Elements in a Soil Profile of the Hyangdeung Area, Gwangju City, Korea (광주광역시 향등지역의 토양단면에서 주성분원소 및 미량성분원소의 지화학적 특성)

  • Shin, In-Hyun;Ahn, Kun-Sang;Kang, Jong-Hyun
    • Journal of the Korean earth science society
    • /
    • v.26 no.8
    • /
    • pp.800-808
    • /
    • 2005
  • Elemental mobility during the weathering of granite in the Gwangju Hyangdeung area was investigated using ICP-MS analysis. It appeared that Al, Fe, Ti, K were lost from the profile, whereas Si, Ca, Na Mg, P and Mn were immobile during chemical weathering. In less weathered soil, large enrichment of K and Ti were found relative to Al, whereas other elements such as Si, Ca, Na, Mg and P are deplete. Fe content is constant throughout the weathered profiles. Amounts of Rb, Sr, Y, Cs, Pb, Th and U increased toward the surface. Nb, and Co have accumulated in the deepest parts of the weathered soil profile. These results agree with similar published studies. In addition, the analytical data shows that Ba and Ga increased, while Cu, Zn, Cr and Ni were relatively constant in this area. REE tend to increase in most samples, while LREEs, relative to Al, were enriched in the lower and upper saprolite. HREEs were enriched in the lower and upper saprolite.

Correlation between Characteristics of SOD in Coastal Sewage and Predictive Factor (연안 저질 SOD의 특성과 유발 영향인자에 대한 상관관계)

  • Kim, Beom-Geun;Khirul, Md Akhte;Kwon, Sung-Hyun;Cho, Dae-Chul
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.5
    • /
    • pp.596-604
    • /
    • 2019
  • This study conducted a sediment culture experiment to investigate the effects of sediment oxygen demand (SOD) and environmental factors on sediment and water quality. We installed a leaching tank in the laboratory, cultured it for 20 days, and analyzed the relationship between P and Fe in the sediment. As a result, the dissolved oxygen of the water layer decreased with time, while the oxidation-reduction potential of the sediment progressed in the negative direction to form an anaerobic reducing environment. The SOD was measured to be 0.05 mg/g at the initial stage of cultivation and increased to 0.09 mg/g on the 20th day, indicating the tendency of increasing consumption of oxygen by the sediment. The change is likely to have caused by oxygen consumption from biological-SOD, which is the decomposition of organic matter accumulated on the sediment surface due to the increase of chl-a, and chemical-SOD consumed when the metal-reducing product produced by the reduction reaction is reoxidized. The correlation between SOD and causality for sediment-extracted sediments was positive for Ex-P and Org-P and negative for Fe-P. The analysis of the microbial community in the sediment on the 20th day showed that anaerobic iron-reducing bacteria (FeRB) were the dominant species. Therefore, when the phosphate bonded to the iron oxide is separated by the reduction reaction, the phosphate is eluted into the water to increase the primary productivity. The reduced substance is reoxidized and contributes to the oxygen consumption of the sediment. The results of this study would be useful as the reference information to improve oxygen resin.

중성자 방사화분석에 의한 한국자기의 분류

  • Gang, Hyeong-Tae;Lee, Cheol
    • 보존과학연구
    • /
    • s.6
    • /
    • pp.111-120
    • /
    • 1985
  • Data on the concentration of Na, K, Sc, Cr, Fe, Co, Cu, Ga, Rb, Cs, Ba, La,Ce, Sm, Eu, Tb, Lu, Hf, Ta and Th obtained by Neutron Activation Analysishave been used to characterise Korean porcelainsherds by multivariate analysis. The mathematical approaches employed is Principal Component Analysis(PCA).PCA was found to be helpful for dimensionality reduction and for obtaining information regarding (a) the number of independent causal variables required to account for the variability in the overall data set, (b) the extent to which agiven variable contributes to a component and(c) the number of causalvariables required to explain the total variability of each measured variable.

  • PDF

모의 방사성용액에서 옥살산에 의한 란탄족과 MA의 공침전

  • 정동용;김응호;김영환;양한범;유재형
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.373-378
    • /
    • 1996
  • 알칼리 및 알칼리토금속(Cs,Rb,Ba,Sr), 전이감속원소(Zr,Fe,Mo,Ni,Pd,Rh), 란탄족 (La,Y,Nd,Ce,Eu.) 및 MA(Np,Am)등 17개 원소로 구성된 질산매질의 모의 방사성용액에서 옥살산에 의한 란탄족과 MA(Minor Actinide)의 공침전 연구를 수행하였다. 옥살산농도 0.5M에서 질산농도의 영향과 아스코빅산 첨가에 따른 원소들의 침전율이 조사되었다. 각 원소들의 침전율은 질산농도에 따라 약간 감소하였으나 란탄족과 MA는 99%이상 공침전되었다. 아스코빅산이 첨가되는 경우 Pd이 금속으로 환원침전되고 Mo.Fe,Ni.Ba의 경우는 침전율이 10∼20% 감소하는 것으로 나타났으나 기타원소들에 대해서는 영향이 나타나지 않았다. Pd의 환원침전은 질산농도 1.0M미만에서 일어났으며. 아스코빅산 농도가 0.01M∼0.02M 부근에서 최대로 나타났다. 하이드라진이 아스코빅산과 같이 첨가될 때 Pd의 환원침전을 억제하는 역할을 하였다.

  • PDF

Element Dispersion and Wallrock Alteration from Samgwang Deposit (삼광광상의 모암변질과 원소분산)

  • Yoo, Bong-Chul;Lee, Gil-Jae;Lee, Jong-Kil;Ji, Eun-Kyung;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.42 no.3
    • /
    • pp.177-193
    • /
    • 2009
  • The Samgwang deposit consists of eight massive mesothermal quartz veins that filled NE and NW-striking fractures along fault zones in Precambrian granitic gneiss of the Gyeonggi massif. The mineralogy and paragenesis of the veins allow two separate discrete mineralization episodes(stage I=quartz and calcite stage, stage II-calcite stage) to be recognized, temporally separated by a major faulting event. The ore minerals are contained within quartz and calcite associated with fracturing and healing of veins that occurred during both mineralization episodes. The hydrothermal alteration of stage I is sericitization, chloritization, carbonitization, pyritization, silicification and argillization. Sericitic zone occurs near and at quartz vein and include mainly sericite, quartz, and minor illite, carbonates and chlorite. Chloritic zone occurs far from quartz vein and is composed of mainly chlorite, quartz and minor sericite, carbonates and epidote. Fe/(Fe+Mg) ratios of sericite and chlorite range 0.45 to 0.50(0.48$\pm$0.02) and 0.74 to 0.81(0.77$\pm$0.03), and belong to muscovite-petzite series and brunsvigite, respectiveIy. Calculated $Al_{IV}$-FE/(FE+Mg) diagrams of sericite and chlorite suggest that this can be a reliable indicator of alteration temperature in Au-Ag deposits. Calculated activities of chlorite end member are $a3(Fe_5Al_2Si_3O_{10}(OH)_6$=0.0275${\sim}$0.0413, $a2(Mg_5Al_2Si_3O_{10}(OH)_6$=1.18E-10${\sim}$7.79E-7, $a1(Mg_6Si_4O_{10}(OH)_6$=4.92E-10${\sim}$9.29E-7. It suggest that chlorite from the Samgwang deposit is iron-rich chlorite formed due to decreasing temperature from high temperature(T>450$^{\circ}C$). Calculated ${\alpha}Na^+$, ${\alpha}K^+$, ${\alpha}Ca^{2+}$, ${\alpha}Mg^{2+}$ and pH values during wallrock alteration are 0.0476($400^{\circ}C$), 0.0863($350^{\circ}C$), 0.0154($400^{\circ}C$), 0.0231($350^{\circ}C$), 2.42E-11($400^{\circ}C$), 7.07E-10($350^{\circ}C$), 1.59E-12($400^{\circ}C$), 1.77E-11($350^{\circ}C$), 5.4${\sim}$6.4($400^{\circ}C$), 5.3${\sim}$5.7($350^{\circ}C$)respectively. Gain elements(enrichment elements) during wallrock alteration are $TiO_2$, $Fe_2O_3(T)$,CaO, MnO, MgO, As, Ag, Cu, Zn, Ni, Co, W, V, Br, Cs, Rb, Sc, Bi, Nb, Sb, Se, Sn and Lu. Elements(Ag, As, Zn, Sc, Sb, Rb, S, $CO_2$) represents a potential tools for exploration in mesothermal and epithermal gold-silver deposits.

Multivariate Analysis of the Geochemical Data of Tin-bearing Granitoids in the Sangdong and the Ulchin Areas, Korea (상동 및 울진지역 주석 화강암질암의 지구화학 자료에 대한 다변량해석)

  • Chon, Hyo-Taek;Cheong, Young-Wook;Son, Chang-Il
    • Economic and Environmental Geology
    • /
    • v.27 no.3
    • /
    • pp.237-246
    • /
    • 1994
  • Tin mineralizations in South Korea have been found only in the Ulchin and Sangdong areas. They appear to be in close spatial association with the Wangpiri granitoid in the UlChin area, and the Nonggeori and Naedeogri granites in the Sangdong area. However, previous works have revealed that there are considerable differences in geological setting, mineralogical and geochemical compositions among these granitoids concerned. The roles of discriminant and multiple regression analysis have been examed to establish geochemical differences among the tin-granitoids and to identify elements relating to tin mineralizations. The data set used in this study consists of 60 observations with 29 elements which are cited from pre-existing publications. A stepwise discriminant analysis determined the group of variables that differentiate between samples from four training sets; Buncheon, Wangpiri, Nonggeori and Naedeogri granitoids. These granitoids were most effectively discriminated on the basis of major elements FeO, CaO and $P_2O_5$ and also by the trace elements Rb and Zr. Results of the multiple regression analysis shows that the level of Sn in granitoids depends positively on ones of MnO, Rb and FeO and negatively $P_2O_5$. Graphical representation of discriminant scores on sampling locations greatly aid recognition of differences in the geochemical characteristics in terms of spatial distribution of granitoids examed. The application of the discriminant analysis provides a potential means of identifying and comparing geochemical characteristics.

  • PDF

Determination of Inorganic Elements in Women Blood Serum using Instrumental Neutron Activation Analysis (중성자방사화분석법을 이용한 성인여성 혈청중의 무기 원소 분석)

  • Moon, Jong-Hwa;Chung, Yong-Sam;Lee, Ok-Hee
    • Analytical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.509-513
    • /
    • 2002
  • In this study, instrumental neutron activation analysis was used to assess the concentration level of inorganic trace elements in Korean women blood serum. It was found out that high concentration of Na and Cl incurs analytical interference, but 12 elements of Br, Ca, Cl, Co, Cr, Cs, Fe, K, Na, Rb, Se, Zn can be determined under the condition of interference minimization. Serum samples collected from 63 women were analyzed and the concentration level and range of the elements were evaluated. NIST SRMs were analyzed simultaneously for analytical quality control. The average values of Na and Cl determined in serum samples are around 3000 mg/L, Ca is 100 mg/L and K is 200 mg/L. Besides, Br, Se and Zn have concentration level of 6.0, 0.1 and 1.0 mg/L, respectively. It was found that there is no significant difference between the present values and reported values.

Element distribution of the surface sediments from the loess plateau in China (황토고원 표층 시료의 원소분포 특성)

  • Yoon, Yoon Yeol;Kwon, Young Ihn;Cho, Soo Young;Lee, Kil Yong
    • Analytical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.468-473
    • /
    • 2007
  • The chemical composition distribution of the surface samples collected from the loess plateau in China were estimated. Major elements concentration distribution difference between 10 different sampling site were not found except sample 3. This sample had higher contents of Ca, Mg, LOI and lower contents of Si, Fe, P, Na, Ti. And also, minor element contents such as Ba, Cr, Nb, Pb, Rb, Zr, V were lower than other samples. UCC-normalized abundances of the most elements were within $0.5-1.5{\times}UCC$ and Cr showed enrichment aspect. Rare-earth element (REE) analysis results showed light REE enriched pattern compared to heavy REE with negative Eu anomaly in condrite-normalized REE pattern.

Geochemical Characteristics of Stream Sediments Based on Bed Rocks in the Naju Area, Korea (기반암에 따른 나주지역 하상퇴적물의 지구화학적 특성)

  • Park, Young-Seog;Kim, Jong-Kyun;Jung, Young-Hwa
    • Journal of the Korean earth science society
    • /
    • v.27 no.1
    • /
    • pp.49-60
    • /
    • 2006
  • The purpose of this study is to investigate geochemical characteristics for stream sediments in the Naju area. We collected 139 stream sediments samples from primary channels. Samples were dried slowly in the laboratory and chemical analysis was carried out using XRF. ICP-AES and NAA. In order to investigate geochemical characteristics, the geological groups categorized into granitic gneiss area, schist area, granite area, arenaceous rock area, tuff area, andesite area, and rhyolite area. Average contents of major elements for geological groups are $SiO_2\;58.37{\sim}66.06wt.%,\;Al_2O_3\;13.98{\sim}18.41wt.%,\;Fe_2O_3\;4.09{\sim}6.10wt.%,\;CaO\;0.54{\sim}1.33wt.%,\;MgO\;0.86{\sim}1.34wt.%,\;K_2O\;2.38{\sim}4.01wt.%,\;Na_2O\;0.90{\sim}1.32wt.%,\;TiO_2\;0.82{\sim}1.03wt.%,\;MnO\;0.09{\sim}0.15wt.%,\;P_2O_5\;0.11{\sim}0.18wt.%$. According to the comparison of average contents of major elements, $Al_2O_3\;and\;K_2O$ are higher in granitic gneiss area, $Fe_2O_3,\;CaO,\;P_2O_5$ are higher in tuff area, MgO and $TiO_2$ are higher in andesite area, $Na_2O_$ is higher in rhyolite area, $SiO_2$, and MnO are higher in arenaceous rock area. Average contents of minor and rare earth elements for geological groups are $Ba\;1278{\sim}1469ppm,\;Be\;1.1{\sim}1.5ppm,\;Cu\;18{\sim}25ppm,\;Nb\;25{\sim}37ppm,\;Ni\;16{\sim}25ppm,\;Pb\;21{\sim}28ppm,\;Sr\;83{\sim}155ppm,\;V\;64{\sim}98ppm,\;Zr\;83{\sim}146ppm,\;Li\;32{\sim}45ppm,\;Co\;7.2{\sim}12.7ppm,\;Cr\;37{\sim}76ppm,\;Cs\;4.8{\sim}9.1ppm,\;Hf\;7.5{\sim}25ppm,\;Rb\;88{\sim}178ppm,\;Sc\;7.7{\sim}12.6ppm,\;Zn\;83{\sim}143ppm,\;Pa\;11.3{\sim}37ppm,\;Ce\;69{\sim}206ppm,\;Eu\;1.1{\sim}1.5ppm,\;Yb\;1.8{\sim}4.4ppm$. According to the comparison of average contents of minor and rare earth elements for geological groups, Pb, Li, Cs, Hf, Rb, Sb, Pa, Ce, Eu, and Yb are higher in granitic gneiss area; Ba, Co, and Cr in schist area; Nb, Ni, and Zr in arenaceous rock area; Sr in tuff area: and Be, Cu, V, Sc, and Zn are such in andesite area.