Geochemical Characteristics of Stream Sediments Based on Bed Rocks in the Naju Area, Korea

기반암에 따른 나주지역 하상퇴적물의 지구화학적 특성

  • Published : 2006.02.28

Abstract

The purpose of this study is to investigate geochemical characteristics for stream sediments in the Naju area. We collected 139 stream sediments samples from primary channels. Samples were dried slowly in the laboratory and chemical analysis was carried out using XRF. ICP-AES and NAA. In order to investigate geochemical characteristics, the geological groups categorized into granitic gneiss area, schist area, granite area, arenaceous rock area, tuff area, andesite area, and rhyolite area. Average contents of major elements for geological groups are $SiO_2\;58.37{\sim}66.06wt.%,\;Al_2O_3\;13.98{\sim}18.41wt.%,\;Fe_2O_3\;4.09{\sim}6.10wt.%,\;CaO\;0.54{\sim}1.33wt.%,\;MgO\;0.86{\sim}1.34wt.%,\;K_2O\;2.38{\sim}4.01wt.%,\;Na_2O\;0.90{\sim}1.32wt.%,\;TiO_2\;0.82{\sim}1.03wt.%,\;MnO\;0.09{\sim}0.15wt.%,\;P_2O_5\;0.11{\sim}0.18wt.%$. According to the comparison of average contents of major elements, $Al_2O_3\;and\;K_2O$ are higher in granitic gneiss area, $Fe_2O_3,\;CaO,\;P_2O_5$ are higher in tuff area, MgO and $TiO_2$ are higher in andesite area, $Na_2O_$ is higher in rhyolite area, $SiO_2$, and MnO are higher in arenaceous rock area. Average contents of minor and rare earth elements for geological groups are $Ba\;1278{\sim}1469ppm,\;Be\;1.1{\sim}1.5ppm,\;Cu\;18{\sim}25ppm,\;Nb\;25{\sim}37ppm,\;Ni\;16{\sim}25ppm,\;Pb\;21{\sim}28ppm,\;Sr\;83{\sim}155ppm,\;V\;64{\sim}98ppm,\;Zr\;83{\sim}146ppm,\;Li\;32{\sim}45ppm,\;Co\;7.2{\sim}12.7ppm,\;Cr\;37{\sim}76ppm,\;Cs\;4.8{\sim}9.1ppm,\;Hf\;7.5{\sim}25ppm,\;Rb\;88{\sim}178ppm,\;Sc\;7.7{\sim}12.6ppm,\;Zn\;83{\sim}143ppm,\;Pa\;11.3{\sim}37ppm,\;Ce\;69{\sim}206ppm,\;Eu\;1.1{\sim}1.5ppm,\;Yb\;1.8{\sim}4.4ppm$. According to the comparison of average contents of minor and rare earth elements for geological groups, Pb, Li, Cs, Hf, Rb, Sb, Pa, Ce, Eu, and Yb are higher in granitic gneiss area; Ba, Co, and Cr in schist area; Nb, Ni, and Zr in arenaceous rock area; Sr in tuff area: and Be, Cu, V, Sc, and Zn are such in andesite area.

본 연구는 나주지역 하상퇴적물에 대한 지구화학적 특성 연구이다. 이를 위해 1차 수계를 대상으로 139개의 하상퇴적물 시료를 채취하였다. 채취된 시료는 실험실에서 자연 건조시켰으며, XRF, ICP-AES, NAA를 이용하여 화학분석을 실시하였다. 기반암에 따른 지구화학적 특성을 알아보기 위하여, 화강암질편마암 지역, 편암류 지역, 화강암류 지역, 사질암 지역, 응회암 지역, 안산암 지역, 유문암 지역으로 분류하였다. 나주지역 하상퇴적물의 지질집단별 주성분원소 평균함량은 $SiO_2\;58.37{\sim}66.06wt.%,\;Al_2O_3\;13.98{\sim}18.41wt.%,\;Fe_2O_3\;4.09{\sim}6.10wt.%,\;CaO\;0.54{\sim}1.33wt.%,\;MgO\;0.86{\sim}1.34wt.%,\;K_2O\;2.38{\sim}4.01wt.%,\;Na_2O\;0.90{\sim}1.32wt.%,\;TiO_2\;0.82{\sim}1.03wt.%,\;MnO\;0.09{\sim}0.15wt.%,\;P_2O_5\;0.11{\sim}0.18wt.%$이다. 주성분원소의 평균함량 비교에서 $Al_2O_3$$K_2O$는 화강암질편마암 지역에서, $Fe_2O_3,\;CaO,\;P_2O_5$는 응회암 지역에서, MgO와 $TiO_2$는 안산암 지역에서, $Na_2O$는 유문암 지역에서 높고, $SiO_2$와 MnO 함량은 사질암 지역에서 약간 높다. 미량성분 및 희토류원소의 지질집단별 평균함량은 $Ba\;1278{\sim}1469ppm,\;Be\;1.1{\sim}1.5ppm,\;Cu\;18{\sim}25ppm,\;Nb\;25{\sim}37ppm,\;Ni\;16{\sim}25ppm,\;Pb\;21{\sim}28ppm,\;Sr\;83{\sim}155ppm,\;V\;64{\sim}98ppm,\;Zr\;83{\sim}146ppm,\;Li\;32{\sim}45ppm,\;Co\;7.2{\sim}12.7ppm,\;Cr\;37{\sim}76ppm,\;Cs\;4.8{\sim}9.1ppm,\;Hf\;7.5{\sim}25ppm,\;Rb\;88{\sim}178ppm,\;Sc\;7.7{\sim}12.6ppm,\;Zn\;83{\sim}143ppm,\;Pa\;11.3{\sim}37ppm,\;Ce\;69{\sim}206ppm,\;Eu\;1.1{\sim}1.5ppm,\;Yb\;1.8{\sim}4.4ppm$이다. Pb, Li, Cs, Hf, Rb, Sb, Pa, Ce, Eu, Yb 평균함량은 화강암질편마암 지역에서, Ba, Co, Cr 평균함량은 편암류 지역에서, Nb, Ni, Zr 평균함량은 사질암 지역에서, Sr 평균함량은 응회암 지역에서 높고, Be, Cu, V, Sc, Zn 평균함량은 안산암 지역에서 다른 지질집단에서 보다 높다.

Keywords

References

  1. 김종균, 박영석, 2005, 광주지역 하상퇴적물에 대한 지질집단별 지구화학적 연구. 자원환경지질, 제38권 4호, 481-492
  2. 박영석, 노영배, 이창신, 1995, 광주-나주 지역에 분포하는 화강암류에 대한 Rb-Sr 동위원소 연구. 한국지구과학회지, 16(3), 247-261
  3. 박영석, 김종균, 한민수, 김용준, 장우석, 신성천, 2002, 장흥지역 1차 수계 하상퇴적물의 지질집단별 지구화학적 특성과 하천수에 대한 연구. 자원환경지질, 35(6), 509-521
  4. 박영석, 장우석, 김종균, 2003, 구례지역 하상퇴적물의 지질집단별 자연배경치에 대한 연구. 자원환경지질, 36(4), 275-284
  5. 신성천, 염승준, 황상기, 2000, 지구화학적 재해 평가를 위한 지화학도 작성 및 기준치 설정. 지질재해 관측 및 방지기술 심포지엄, 2000년도 지질재해방재기술개발사업단 . 대한지질 공학회 . 대한지질공학회 공동학술발표회논문집, 215-233
  6. 신성천, 황상기, 염승준, 이평구, 박성원, 이수재, 송윤구, 박영석, 김용준, 진명식, 홍영국, 이병대, 김연기, 이진수, 김용욱, 윤욱, 박덕원, 김인준, 이재호, 최상훈, 김건한, 양명권, 심상권, 박진태, 이길용, 윤윤열, 천상기, 문상원, 박석록, 유연희, 강민주, 2001, 전라남도 지구화학 지도책: 한국 지구화학 지도책(1:700,000), 제 5집. 한국지질자원연구원, 70 p
  7. 염승준, 이평구, 강민주, 신성천, 유연희, 2004, 주암댐 집수유역 내 하상퇴적물의 중금속 오염현황 및 거동특성. 자원환경지질, 37(3), 311-324
  8. 이승구, 양동윤, 홍세선, 곽재호, 오근창, 2003, 희토류원소를 이용한 순창지역 섬진강 수 계내 하상퇴적물의 기원지 연구. 지질학회지, 39(1), 81-97
  9. 임연풍(최석원, 김억수 역), 1996, 의학환경 지구화학. 도서출판 춘광
  10. 전효택, 1995, 토양에서의 잠재적 독성금속원소들의 분산과 오염평가. 제11회 공동학술경연 회 발표논문집: 대한지질학회, 대한자원환경지질학회, 8-31
  11. 전효택, 문희수, 김규환, 정명채, 1998, 환경지질학. 서울대학교 출판부, 529 p
  12. 최위찬, 황상구, 김영범, 1986, 영광도폭 지질보고서. 한국자원연구소, 31 p
  13. 홍승호, 황상구, 1990, 나주도폭 지질보고서. 한국동력자원연구소. 22 p
  14. Anon, J., 1977, Ecological evaluation of proposed discharge of dredged or fill material into navigable water. Interim Guidance for Implementation of section 404(b) of Public Low, 92-500
  15. Brooks, R.R., 1983, Biological methods of prospecting for minerals. John Wiley and Sons Inc., 321 p
  16. Darnley, A.G., 1990, International geochemical mapping: a new global project. Journal of Geochemical Exploration, 39, 1-14 https://doi.org/10.1016/0375-6742(90)90066-J
  17. Darnley, A.G., Bjorklund, A., Bolviken, B., Gustavsson, N., Koval, P.V., Plant, K.A., Steenfelt, A., Tauchid, M., Xie X,, Garrett, R.G. and Hall, G.E.M., 1995, A Global Geochemical Database for Environmental and Resource Management-Recommendations for International Geochemical Mapping: Final Report of IGCP Project 259, Earth Sciences 19, UNESCO Publishing, 122 p
  18. Davis, B.D. and Ballinger, R.C., 1990, Heavy metal soils in north Somerset, England, with special reference to contamination from base metal mining in the Mendips. Environ. Geochem. Health, 12, 291-300 https://doi.org/10.1007/BF01783454
  19. Dissanayake, C.B., and Rohana Chandrajith., 1999, Medical geochemistry of environments. Journal of Earth-Science Reviews, 47, 219-258 https://doi.org/10.1016/S0012-8252(99)00033-1
  20. FOREGS (Forum of European Geological Surveys), 1998, FOREGS Geochemical mapping field manual. Geological Survey of Filand Guide 47, 1-36
  21. GNHPR (Group for Natural Hazard prevention Research), 2001, http://gis.paichai.ac.nj/geochem. Korea Institute of Geoscience and Mineral Research
  22. Henderson, P., 1984, Rare earth elements geochemistry. Elsvier Sciencd Publish Co. Inc., 510 p
  23. Irvine, T.N. and Baragar, W.R.B., 1971, A guide to chemical classification of the common igneous rocks. Can. Jour. Earth Sci., 8, 523-548 https://doi.org/10.1139/e71-055
  24. Kabata-Pendias, A. and Pendias, H., 1984, Trace elements in soil and plants, CRC Press INC., 315 p
  25. Thornton, I., 1983, Applied Environmental Geochemistry. Academic Press, 501 p
  26. UNESCO, 1990, Geological Map of the World.(Scale 1:25,000,000; edited by O.Dottin.) Commission for the Geological Map of the World, United Nations Educational, Scientific and Cultural Organization, Paris