• 제목/요약/키워드: Fe-based powder

검색결과 232건 처리시간 0.027초

Fe계 연자성 합금 분말의 고온 압연시 자성특성에 미치는 압연인자들의 영향 (Effect of rolling parameters on soft-magnetic properties during hot rolling of Fe-based soft magnetic alloy powders)

  • 김휘준;이주호;이성호;박은수;허무영;배정찬
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.266-269
    • /
    • 2009
  • Iron-based soft magnetic materials are widely used as cores, such as transformer transformers, motors, and generators. Reducing losses generated from soft magnetic materials of these applications results in improving energy conversion efficiency. Recently, the new P/M soft magnetic material realized an energy loss of 68 W/kg with a drive magnetic flux of 1 T, at a frequency of 1 kHz, rivaling general-purpose electromagnetic steel sheet in the low frequency range of 200 Hz to 1 kHz. In this research, the effect of rolling parameters on soft magnetic properties of Fe-based powder cores was investigated. The Fe-based soft magnetic plates were produced by the hot powder rolling process after both pure Fe and Fe-4%Si powders were canned, evacuated, and sealed in Cu can. The soft magnetic properties such as energy loss and coercive power were measured by B-H curve analyzer. The soft magnetic properties of rolled sheets were measured under conditions of a magnetic flux density of 1 T at a frequency of 200 kHz. It was found that rolling reduction ratio is the most effective parameter on reducing both energy loss and coercivity because of increasing aspect ratio with reduction ratio. By increasing aspect ratio from 1 to 9 through hot rolling of pure Fe powder, a significant loss reduction of one-third that of SPS sample was achieved.

  • PDF

Development of Powdered Soft Magnetic Material Suitable for Electric Devices Operating at High Frequencies

  • Ishimine, Tomoyuki;Maeda, Toru;Toyoda, Haruhisa;Mimura, Kouji;Nishioka, Takao;Sugimoto, Satoshi
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.802-803
    • /
    • 2006
  • Recently, there has been a growing demand for soft magnetic materials with high conversion characteristics, due to the trend of electric devices to higher-frequency range. For ruduceing core loss in the high-frequency range, using finely grained and high-resistivity Fe-based alloy powder is most efficient methods. But, conventionally, there's been a compressibility problem for such powder. In this work, Fe-based alloy powder that offers both high resistivity and high compressibility was developed by studyuing composition of the powder, and reduction of core loss of P/M soft magnetic materials in the high frequency range was achieved.

  • PDF

Magnetic properties of Mn54Al46C2.44/Sm2Fe17N3 and Mn54Al46C2.44/Fe65Co35 composites

  • Qian, Hui-Dong;Si, Ping-Zhan;Lim, Jung Tae;Kim, Jong-Woo;Park, Jihoon;Choi, Chul-Jin
    • Journal of the Korean Physical Society
    • /
    • 제73권11호
    • /
    • pp.1703-1707
    • /
    • 2018
  • Ferromagnetic ${\tau}-phase$ $Mn_{54}Al_{46}C_{2.44}$ particles were synthesized, and its composites with commercial $Sm_2Fe_{17}N_3$ and synthesized $Fe_{65}Co_{35}$ powders were fabricated. Smaller grain size than the single domain size of the $Mn_{54}Al_{46}C_{2.44}$ without obvious grain boundaries and secondary phases is the origin for the low intrinsic coercivity. It was confirmed that the magnetic properties of the $Mn_{54}Al_{46}C_{2.44}$ can be enhanced by magnetic exchange coupling with the hard magnetic $Sm_2Fe_{17}N_3$ and soft magnetic $Fe_{65}Co_{35}$. The high degrees of the exchange coupling were verified by calculating first derivative curves. Thermo-magnetic stabilities of the composites from 100 to 400 K were measured and compared. It was demonstrated that the $Mn_{54}Al_{46}C_{2.44}$ based composites containing $Sm_2Fe_{17}N_3$ and $Fe_{65}Co_{35}$ could be promising candidates for future permanent magnetic materials with the proper control of purity, magnetic properties, etc.

철계 소결합금의 오스테나이트 안정성 (Austenite Stability of Sintered Fe-based Alloy)

  • 최승규;서남혁;전준협;손승배;이석재
    • 한국분말재료학회지
    • /
    • 제27권5호
    • /
    • pp.414-419
    • /
    • 2020
  • In the present study, we investigated the austenite stability of a sintered Fe-based nanocrystalline alloy. The volume fraction of austenite was measured based on the X-ray diffraction data of sintered Fe-based nanocrystalline alloys, which were prepared by high-energy ball milling and spark plasma sintering. The sintered alloy samples showed a higher volume fraction of austenite at room temperature as compared to the equilibrium volume fraction of austenite obtained using thermodynamic calculations, which resulted from the nanosized crystalline structure of the sintered alloy. It was proved that the austenite stability of the sintered Fe-based alloy increased with a rise in the amount of austenite stabilizing elements such as Mn, Ni, and C; however, it increased more effectively with a decrease in the actual grain size. Furthermore, we proposed a new equation to predict the martensite starting temperature for sintered Fe-based alloys.

Synthesis of Nano Metal Powder by Electrochemical Reduction of Iron Oxides

  • Seong, Ki-Hun;Lee, Jai-Sung
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.482-483
    • /
    • 2006
  • Synthesis of iron nanopowder by room-temperature electrochemical reduction process of ${\alpha}-Fe_2O_3$ nanopowder was investigated in terms of phase evolution and microstructure. As process variables, reduction time and applied voltage were changed in the range of $1{\sim}20$ h and $30{\sim}40$ V, respectively. From XRD analyses, it was found that volume of Fe phase increased with increasing reduction time and applied voltage, respectively. The crystallite size of Fe phase in all powder samples was less than 30 nm, implying that particle growth was inhibited by the reaction at room temperature. Based on the distinct equilibrium shape of crystalline particle, phase composition of nanoparticles was identified by TEM observation.

  • PDF

Preparation of Warm Compacted NbC Reinforced Iron-based Composite and its Tribological Behavior

  • Xiao, Zhiyu;Ngai, Tungwai Leo;Wen, Liping;Li, Yuanyuan
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.851-852
    • /
    • 2006
  • The introduction of ceramic particulate into metallic powder will unavoidably lower the compressibility and formability of the mixed powder. In this study, warm compaction, which is a simple and low cost technique to produce high density PM parts, was introduced in preparing composite. The aim of this paper is to prepare the warm compacted NbC particulate reinforced Fe-based composite, then study its tribological behavior and application in the valve-guide cup. A 15 wt.% NbC reinforced iron-based composite was prepared. It possesses a relative density of 98%, a tensile strength of 515 MPa, a hardness of HRC 58 and a remarkable tribological behavior.

  • PDF

Fe계 나노결정립 분말 시트에 첨가된 CNT의 볼밀 공정에 따른 전자파 흡수 특성 변화 (The Characteristic Changes of Electromagnetic Wave Absorption in Fe-based Nanocrystalline P/M Sheets Mixed with Ball-Milled Carbon Nanotubes)

  • 김선이;김미래;손근용;박원욱
    • 한국분말재료학회지
    • /
    • 제16권6호
    • /
    • pp.424-430
    • /
    • 2009
  • Electromagnetic wave energies are consumed in the form of thermal energy, which is mainly caused by magnetic loss, dielectric loss and conductive loss. In this study, CNT was added to the nanocrystalline soft magnetic materials inducing a high magnetic loss, in order to improve the dielectric loss of the EM wave absorption sheet. Generally, the aspect ratio and the dispersion state of CNT can be changed by the pre-ball milling process, which affects the absorbing properties. After the various ball-milling processes, 1wt% of CNTs were mixed with the nanocrystalline $Fe_{73}Si_{16}B_7Nb_{3}Cu_1$ base powder, and then further processed to make EM absorption sheets. As a result, the addition of CNT to Fe-based nanocrystalline materials improved the absorption properties. However, the increase of ball-milling time for more than 1h was not desirable for the powder mixture, because the ballmilling caused the shortening of CNT length and the agglomeration of the CNT flakes.

Fe-계 연자성 금속분말을 이용한 2.4 GHz 대역 무선통신용 전파 흡수체의 특성 평가 (Characteristics of Electromagnetic Wave Absorber Sheet for 2.4 GHz Wireless Communication Frequency Bands Using Fe Based Alloy Soft Magnetic Metal Powder)

  • 김병철;서만철;윤여춘
    • 한국재료학회지
    • /
    • 제29권9호
    • /
    • pp.532-541
    • /
    • 2019
  • Information and communication technologies are developing rapidly as IC chip size becomes smaller and information processing becomes faster. With this development, digital circuit technology is being widely applied to mobile phones, wireless LANs, mobile terminals, and digital communications, in which high frequency range of GHz is used. In high-density electronic circuits, issues of noise and EMC(Electro-Magnetic Compatibility) arising from cross talk between interconnects or devices should be solved. In this study, sheet-type electromagnetic wave absorbers that cause electromagnetic wave attenuation are fabricated using composites based on soft magnetic metal powder and silicon rubber to solve the problem of electromagnetic waves generated in wireless communication products operating at the frequency range of 2.4 GHz. Sendust(Fe-Si-Al) and carbonyl iron(Fe-C) were used as soft magnetic metals, and their concentrations and sheet thicknesses were varied. Using soft magnetic metal powder, a sheet is fabricated to exhibit maximum electromagnetic attenuation in the target frequency band, and a value of 34.2dB(99.9 % absorption) is achieved at the target frequency.

Mechanical Properties and Microstructure of Aluminum Alloys with Dispersed Nanoscale Quasicrystalline Particles

  • Fujita, Masashi;Kimura, Hisamichi;Inoue, Akihisa
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.708-709
    • /
    • 2006
  • New Al-based alloys with very high ultimate tensile strength were developed in high Al concentration range of 91-95 at.% for Al-Fe-Cr-Ti-M (M: Co and Mo) systems and Al-Fe-Cr-Mo-Ti-Co system by the dispersion of nanoscale quasicrystalline particles in Al phase. The effect of adding elements, M was discussed in the viewpoint of stability of super-cooled liquid state and formation ability of quasicrystalline phase. The P/M Al-Fe-Cr-Ti-M alloys with dispersed nanoscale quasicrystalline particles exhibited ultimate tensile strength of 350MPa at 573K and 200MPa at 673K.

  • PDF