DOI QR코드

DOI QR Code

Characteristics of Electromagnetic Wave Absorber Sheet for 2.4 GHz Wireless Communication Frequency Bands Using Fe Based Alloy Soft Magnetic Metal Powder

Fe-계 연자성 금속분말을 이용한 2.4 GHz 대역 무선통신용 전파 흡수체의 특성 평가

  • Kim, ByeongCheol (Department of Chemical Engineering & Biotechnology, Korea Polytechnic University) ;
  • Seo, ManCheol (Department of Chemical Engineering & Biotechnology, Korea Polytechnic University) ;
  • Yun, Yeochun (JMC Co., LTD.)
  • 김병철 (한국산업기술대학교 생명화학공학과) ;
  • 서만철 (한국산업기술대학교 생명화학공학과) ;
  • 윤여춘 ((주)제이엠씨)
  • Received : 2019.07.09
  • Accepted : 2019.08.19
  • Published : 2019.09.27

Abstract

Information and communication technologies are developing rapidly as IC chip size becomes smaller and information processing becomes faster. With this development, digital circuit technology is being widely applied to mobile phones, wireless LANs, mobile terminals, and digital communications, in which high frequency range of GHz is used. In high-density electronic circuits, issues of noise and EMC(Electro-Magnetic Compatibility) arising from cross talk between interconnects or devices should be solved. In this study, sheet-type electromagnetic wave absorbers that cause electromagnetic wave attenuation are fabricated using composites based on soft magnetic metal powder and silicon rubber to solve the problem of electromagnetic waves generated in wireless communication products operating at the frequency range of 2.4 GHz. Sendust(Fe-Si-Al) and carbonyl iron(Fe-C) were used as soft magnetic metals, and their concentrations and sheet thicknesses were varied. Using soft magnetic metal powder, a sheet is fabricated to exhibit maximum electromagnetic attenuation in the target frequency band, and a value of 34.2dB(99.9 % absorption) is achieved at the target frequency.

Keywords

References

  1. D. G. Kang, Establish and Revision of New Electromagnetic Interference Criteria, p.11, J. Korea Radio Promotion, Seoul (1996).
  2. H. S. Cho and S. S. Kim, IEEE Trans. Mag., 35, 3151 (1999). https://doi.org/10.1109/20.801111
  3. I.-G. Chen, S.-H. Hsu and Y.-H. Chang, J. Appl. Phys., 87, 6247 (2000). https://doi.org/10.1063/1.372669
  4. S. S. Kim, S. T. Kim, Y. C. Yoon and K. S. Lee, J. Appl. Phys., 97, 10F905 (2005). https://doi.org/10.1063/1.1852371
  5. K. S. Lee, Y. C. Yun, I. B. Jeong and S. S. Kim, Mater. Sci. For., 534, 1465 (2007). https://doi.org/10.4028/www.scientific.net/MSF.534-536.1465
  6. S. H. Moon, S. J. Shin, J. M. Song, D. Il Kim and K. M. Kim, J. Korea Electromagnetic Engineering Soc., 14, 1329 (2003).
  7. K. Akita, Ferrites: Proceed. of ICF, p. 885, Center for academic publications, D. Reidel Publishing Company, Dordrecht Boston London (1980).
  8. S. S. Kim, D. H. Han and S. B. Jo, IEEE Trans. Mag., 30, 4554 (1994). https://doi.org/10.1109/20.334146
  9. Y. Naito, J. Phys. IV, 7, C1-405 (1997).
  10. S. S. Kim, S. B. Jo, K. I. Kwon, K. K. Choi, J. M. Kim and K. S. Churn, IEEE Trans. Magn., 27, 5462 (1991). https://doi.org/10.1109/20.278872
  11. Y. Naito, K. Suetake, IEEE Trans. Micro. Theory Tech., 19, 65 (1971). https://doi.org/10.1109/TMTT.1971.1127446
  12. S. Yoshida, M. Sato, E. Sugawara and Y. Shimada, J. Appl. Phys., 35, 4636 (1999).
  13. X. Zhang, T. Ekiert, K. M. Unruh, J. Q. Xiao, M. Golt and R. Wu, J. Appl. Phys., 99, 08M914 (2006). https://doi.org/10.1063/1.2175657
  14. Y. J. Kim, Magnetic Property and Microwave Absorbance of Hexaferrites at Ka-band (26.5-40 GHz), p.20, Department of Materials Engineering Graduate School, Chungbuk National University Cheongju, Korea (2001).