• Title/Summary/Keyword: Fe ion

Search Result 1,131, Processing Time 0.026 seconds

EVALUATION OF FERROCYANIDE ANION EXCHANGE RESINS REGARDING THE UPTAKE OF Cs+ IONS AND THEIR REGENERATION

  • Won, Hui-Jun;Moon, Jei-Kwon;Jung, Chong-Hun;Chung, Won-Yang
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.489-496
    • /
    • 2008
  • Ferrocyanide-anion exchange resin was prepared and the prepared ion exchange resins were tested on the ability to uptake $Cs^+$ ion. The prepared ion exchange resins were resin-KCoFC, resin-KNiFC, and resin-KCuFC. The three tested ion exchange resins showed ion exchange selectivity on the $Cs^+$ ion of the surrogate soil decontamination solution, and resin-KCoFC showed the best $Cs^+$ ion uptake capability among the tested ion exchange resins. The ion exchange behaviors were explained well by the modified Dubinin-Polanyi equation. A regeneration feasibility study of the spent ion exchange resins was also performed by the successive application of hydrogen peroxide and hydrazine. The desorption of the $Cs^+$ ion from the ion exchange resin satisfied the electroneutrality condition in the oxidation step; the desorption of the $Fe^{2+}$ ion in the reduction step could also be reduced by adding the $K^+$ ion.

Adsorption Characteristics by Synthesized Goethite in the Mixed Solution Systems of Phosphate, Sulfate, and Copper Ions (합성 Goethite에 의한 인산이온, 황산이온 및 구리이온의 혼합용액에서의 흡착특성)

  • 감상규;이동환;이민규
    • Journal of Environmental Science International
    • /
    • v.12 no.10
    • /
    • pp.1055-1060
    • /
    • 2003
  • Adsorption on goethite of individual component from a solution containing phosphate, sulfate, or copper ion was investigated. Competitive adsorption in the binary and ternary solution systems composed of phosphate, sulfate, and copper ions was also investigated. In competitive adsorption systems with phosphate and sulfate ions, the presence of phosphate ion reduced the adsorption of sulfate ion largely. On the other hand, the presence of sulfate ion caused only a small decrease in phosphate adsorption. This result suggests that phosphate ion is a stronger competitor for adsorption on goethite than sulfate ion, which is consistent with the higher affinity of phosphate for the surface compared to sulfate ion. Compared to the results from single-sorbate systems, adsorption of copper ion in the binary system of sulfate ion and copper ion was found to be enhanced in the presence of sulfate ion. Addition of sulfate ion to the binary system of copper ion and phosphate ion resulted in a small enhancement in copper sorption. This result implies that the presence of sulfate ion promotes adsorption of the ternary complex FeOHCuSO$_4$. The adsorption isotherms could be well described by the Langmuir adsorption equation.

Formation and Color of the Spinel Solid Solution in CoO-ZnO-$Fe_2O_3$-$TiO_2$-$SnO_2$ System (CoO-ZnO-$Fe_2O_3$-$TiO_2$-$SnO_2$계 Spinel 고용체의 생성과 발색에 관한 연구)

  • 이응상;이진성
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.11
    • /
    • pp.897-907
    • /
    • 1991
  • This study was conducted to research the formation and the color development of CoO-ZnO-Fe2O3-TiO2-SnO2 system for the purpose of synthesizing the spinel pigments which are stable at high temperature. After preparing CoO-ZnO-Fe2O3, in which CoO causes the color, as a basic composition, $\chi$CoO.(1-$\chi$)ZnO.Fe2O3 system, $\chi$CoO.(1-$\chi$)ZnO.TiO2 system and $\chi$CoO.(1-$\chi$)ZnO.SnO2 system were prepared with $\chi$=0, 0.2, 0.5, 0.7, 1.0 mole ratio respectively. The manufacturing was carried out at 128$0^{\circ}C$ for 90 minutes. These specimens were analyzed by the reflectance measurement and the X-ray diffraction analysis and the results were summarized as follows: 1. All of the specimens formed the spinel structure and were colored with stable yellow or blue. 2. As the content of CoO and Fe2O3 in the specimens being increased, the reflectance of each specimen was measured becoming lower and the colors were changed from yellow to greyish blue and from blue to dark blue. 3. As the substituting amount of Co2+ ion for Zn2+ ion in $\chi$CoO-ZnO-TiO2-SnO2 system being increased, the colors were changed from blue to greyish blue. The colors were changed from yellow to grayish green owing to the tetrahedral Co2+ ions being increased, the octahedral Co2+ ions being decreased with increasing the amount of Sn4+ ions. 4. CoO-ZnO-Fe2O3-TiO2-SnO2 system, in which Zn2+ was substituted with Co2+ and Fe3+ was substituted with Ti4+ and Sn4+, easily formed the spinel structure without regard to the amount of substitution or the ion owing to the selectivity of the coordination number: 4 of Zn2+, 4 of Co2+, 6 of Fe3+ or 6 of Ti4+ and Sn4+.

  • PDF

Fabrication and Characteristics of a Highly Sensitive GMR-SV Biosensor for Detecting of Micron Magnetic Beads (미크론 자성비드 검출용 바이오센서에 대한 고감도 GMR-SV 소자의 제작과 특성 연구)

  • Choi, Jong-Gu;Lee, Sang-Suk;Park, Young-Seok
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.5
    • /
    • pp.173-177
    • /
    • 2012
  • The multilayer structure of glass/Ta(5.8 nm)/NiFe(5 nm)/Cu(t nm)/NiFe(3 nm)/FeMn(12 nm)/Ta(5.8 nm) as typical GMR-SV (giant magnetoresistance-spin valve) films is prepared by ion beam sputtering deposition (IBD). The coercivity and magnetoresiatance ratio are increased and decreased for the decrease of Cu thickness when the thickness of nonmagnetic Cu layer from is varied 2.2 nm to 3.0 nm. It means that the decrease of non-magntic layer is effected to the interlayer exchange coupling of pinned layer and the spin configuration array of free layer. For experiment of detecting and dropping of magnetic beads we used the GMR-SV sensor with glass/Ta/NiFe/Cu/NiFe/FeMn/Ta structure. From the comparison of before and after for the dropping status of magnetic bead, the variations of MR ratio, $H_{ex}$, and $H_c$ are showed 0.9 %, 3 Oe, and 2 Oe, respectively. The fabrication of GMR-SV sensor was included in the process of film deposition, photo-lithography, ion milling, and MR measurement. Further, GMR-SV device can be easily integrated so that detecting biosensor on a single chip becomes possible.

Preparation and Electrochemical Properties of LiFePO4-PSS Composite Cathode for Lithium-ion Batteries

  • Nguyen, Hiep Van;Jin, En Mei;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.177-180
    • /
    • 2012
  • In this study, we prepared $LiFePO_4$- poly (sodium 4-styrenesulfonate) (PSS) composite by the hydrothermal method and ball-milling process. Different wt% PSS were added to $LiFePO_4$. The cathode electrodes were made from mixtures of $LiFePO_4$-PSS: SP-270: PVDF in a weighting ratio of 70%: 25%: 5%. $LiFePO_4$-PSS powders were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM). The electrochemical properties of $LiFePO_4$-PSS/Li batteries were analyzed by cyclic voltammetry, charge/discharge tests, and AC impedance spectroscopy. A Li/$LiFePO_4$-PSS battery with 4.75 wt% PSS shows the best electrochemical properties, with a discharge capacity of 128 mAh/g.

The Treatment of Acid Mine Drainage - The removal of Iron(Fe) component- (자력에 의한 산성 광산 배수의 처리 - 철(Fe) 성분의 제거-)

  • Song, Kun-Ho;Lee, Kwang-Rae
    • Journal of Industrial Technology
    • /
    • v.32 no.A
    • /
    • pp.21-27
    • /
    • 2012
  • The characteristics of floc formation of the iron(Fe) ions contained in the acid mine drainage was studied for developing the process treating the acid mine drainage. The iron(Fe) ions were formed into flocs by the acid-base reaction with the added $Ca(OH)_2$. The molal ratio of iron(Fe) vs $Ca(OH)_2$ was one of major control variables in treatment; pH change, iron(Fe) ions concentration in treated drainage, DO (dissolved oxygen content). In addition, the air gave much effect on the color of the $iron(Fe)-Ca(OH)_2$ flocs and the attachment to magnet. The attaching to the magnet of the flocs formed in the air was much less than the case without air.

  • PDF

Recovery of High Purity Tin from Waste Solution of the Tin Plating by Ion-exchange and Cyclone-electrowinning (주석도금폐액으로부터 이온교환 및 사이클론 전해채취를 이용한 고순도 주석의 회수)

  • Kang, Yong-Ho;Shin, Gi-Wung;Ahn, Jae-Woo
    • Resources Recycling
    • /
    • v.25 no.4
    • /
    • pp.42-48
    • /
    • 2016
  • A research for the recovery of the metal with high purity from the waste tin plating solution was carried out. First, tin plating waste solution was tested to remove the organic substances and metallic impurities such as Fe, Zn, Na etc. using ion exchange resin having iminodiacetic functional groups (Lewatit TP 207). Second, the tin solution was purified to obtain the high purity tin solution using ion exchange resin having ethylhexyl-phosphate functional groups (Lewatit VPOC 1026). Finally, 99.98% of the high purity of tin metal can be recovered from the purified solution by cyclone type electrowinning method.

Characteristics of manganese removal by ozonation: Effect of existing co-ion and optimum dosage (오존을 이용한 용존성 망간 제거 특성: 공존이온의 영향 및 최적주입량)

  • Kwak, Yeonwoo;Lee, Seulki;Lee, Yongsoo;Hong, Seongho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.2
    • /
    • pp.145-152
    • /
    • 2018
  • This study is focused on manganese (Mn(II)) removal by ozonation in surface water. Instant ozone demand for the water was 0.5 mg/L in the study. When 0.5 mg/L of Mn(II) is existed in water, the optimum ozone concentration was 1.25 mg/L with reaction time 10 minutes to meet the drinking water regulation. The ozone concentration to meet the drinking water regulation was much higher than the stoichiometric concentration. The reaction of soluble manganese removal was so fast that the reaction time does not affect the removal dramatically. When Mn(II) is existed with Fe, the removal of Mn(II) was not affected by Fe ion. However As(V) is existed as co-ion the removal of Mn(II) was decreased by 10%. Adding ozone to surface water has limited effect to remove dissolved organic matter. When ozone is used as oxidant to remove Mn(II) in the water, the existing co-ion should be evaluated to determine optimum concentration.

Effect of Reheating on the Ion-nitrided Surface Microstructure of AI-Cr-Mo Steel (이온질화처리된 AI-Cr-Mo 강의 재가열 처리에 의한 표면조직변화)

  • Lee, J.I.;Shin, Y.S.;Kim, M.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 1988
  • In this study the improvement of mechanical properties of ion-nitrided SACM-1 steel was investigated by analysing microstructural developments and hardness increase in the nitrided surface layer. Specimens were quenched at $570^{\circ}C$, which is lower than the eutectoid temperature ($590^{\circ}C$) of Fe-N binary system after nitrided at temperature of $460-570^{\circ}C$ for 2-8 hours under constant pressure of 8 torr. The depths of diffusion and compound layers were appeared to proportional to the root mean square time of nitriding. And the hardness showed the maximun value Hv = 1200 for the specimen nitrided at $530^{\circ}C$. Hardness distribution of the. ion-nitrided steels were increased by diffusion treatment below the eutectoid temperature of the Fe-N binary system. A prolonged heat treatment below the eutectoid temperature was attributed to the increase in the depth of diffusion layer at the expense of the decrease in surface hardness of the ion nitreded steel.

  • PDF