• Title/Summary/Keyword: Fe/Ni layer

Search Result 337, Processing Time 0.03 seconds

Fabrication and Characteristics of Magnetic Tunneling Transistors using the Amorphous n-Type Si Films (비정질 n형 Si 박막을 이용한 자기터널링 트랜지스터 제작과 특성)

  • Lee, Sang-Suk;Lee, Jin-Yong;Hwang, Do-Guwn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.3
    • /
    • pp.276-283
    • /
    • 2005
  • Magnetic tunneling transistor (MTT) device using the amorphous n-type Si semiconductor film for base and collector consisting of the [CoFe/NiFe](free layer) and Si(top layer) multilayers was used to study the spin-dependent hot electron magnetocurrent (MC) and tunneling magnetoresistance (TMR) at room temperature. A large MC of 40.2 % was observed at the emitter-base bias voltage ( $V_{EB}$ ) of 0.62 V. The increasing emitter hot current and transfer ratio ( $I_{C}$/ $I_{E}$) as $V_{EB}$ are mainly due to a rapid increase of the number of conduction band states in the Si collector. However, above the $V_{EB}$ of 0.62 V, the rapid decrease of MC was observed in amorphous Si-based MTT because of hot electron spin-dependent elastic scattering across CoFe/Si interfaces.

Comparative Study of Ni effect on the Corrosion Behavior of Low Alloy Steels in FGD and Acid Rain Environments (산성비 및 배연탈황설비 환경에서 Ni 첨가에 따른 저합금강의 내식성 비교연구)

  • Han, Jun-Hee;Nguyen, Dang-Nam;Jang, Young-Wook;Kim, Jung-Gu
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.9
    • /
    • pp.558-566
    • /
    • 2009
  • The alloying effect of a small amount of nickel on low alloy steel for application to flue gas desulfurization(FGD) systems was studied. The structural characteristics of the rust layer were investigated by scanning electron microscopy(SEM). The electrochemical properties were examined by means of potentiostatic polarization test, potentiodynamic polarization test, and electrochemical impedance spectroscopy(EIS) in a modified green death solution of 16.9 vol.% $H_2SO_4$+0.35 vol.% HCl at $60^{\circ}C$ and an acid rain solution of $6.25{\times}10^{-5}M\;H_2SO_4+5.5{\times}10^{-3}M\;NaCl$ at room temperature. It was found that as the amount of nickel increased, the corrosion rate increased in the modified green death solution, which seemed to result from micro-galvanic corrosion between NiS and alloy matrix. In acid rain solution, the corrosion rate decreased as the amount of nickel increased due to the repulsive force of $NiFe_2O_4$ rust against $Cl^-$ ions by electronegativity.

Switchable Uncompensated Antiferromagnetic Spins: Their Role in Exchange Bias

  • Lee, Ki-Suk;Kim, Sang-Koog;Kortright J.B.;Kim, Kwang-Youn;Shin, Sung-Chul
    • Journal of Magnetics
    • /
    • v.10 no.1
    • /
    • pp.36-39
    • /
    • 2005
  • We report element-resolved and interface-sensitive magnetization reversals investigated from an oppositely exchange-biased NiFe/FeMn/Co structure by employing soft x-ray resonant Kerr rotation measurements. We have found not only switchable uncompensated antiferromagnetic regions with its sizable thicknesses at both interfaces of the FeMn layer but also their strong coupling to the individual ferromagnetic layers. These experimental results provide a better insight into experimentally observed reductions in exchange-bias field on the basis of an interface-proximity model proposed in this work.

Analysis of the Residual Stress of CIGS Layer with the Different Thickness of Solar Cell Element Layers and Fe-52wt% Substrate (연성 CIGS 태양전지의 Fe-52wt% 기판과 박막층의 두께에 따른 잔류응력해석)

  • Han, Yun-Ho;Lee, Min-Su;Eom, Ho-Gyeong;Kim, Dong-Hwan;Im, Tae-Hong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.137-138
    • /
    • 2012
  • 박막태양전지의 경우 기판재와 태양전지를 구성하는 반도체 층간의 열팽창 거동 차이가 태양전지의 변형을 야기한다. 이러한 열변형은 태양전지의 효율에 영향을 주는 것으로 알려져 있다. 그러므로 태양전지를 구성하는 반도체 층과 열팽창 거동이 유사한 기판재의 적용이 필요하다. 본 연구에서는 연성 CIGS 태양전지를 구성하는 기판과 박막층의 두께변화가 열공정 중 발생하는 잔류응력에 미치는 영향을 전산해석 하고자 하였다. 전산해석 결과 Fe-52wt%Ni 기판재의 두께가 증가함에 따라 CIGS 박막층 내부의 잔류응력은 감소하였다. SiO2 절연층의 두께가 증가하면 CIGS 박막층의 잔류응력이 증가하였다. Mo 후면전극층이 얇아지면 잔류응력이 감소하였으나 CIGS층의 두께변화는 CIGS층의 잔류응력에 큰 영향을 미치지 않았다.

  • PDF

Property of Nano-thickness Nickel Silicides with Low Temperature Catalytic CVD (Catalytic CVD 저온공정으로 제조된 나노급 니켈실리사이드의 물성)

  • Choi, Yongyoon;Kim, Kunil;Park, Jongsung;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.2
    • /
    • pp.133-140
    • /
    • 2010
  • 10 nm thick Ni layers were deposited on 200 nm $SiO_2/Si$ substrates using an e-beam evaporator. Then, 60 nm or 20 nm thick ${\alpha}$-Si:H layers were grown at low temperature (<$200^{\circ}C$) by a Catalytic-CVD. NiSi layers were already formed instantaneously during Cat-CVD process regardless of the thickness of the $\alpha$-Si. The resulting changes in sheet resistance, microstructure, phase, chemical composition, and surface roughness with the additional rapid thermal annealing up to $500^{\circ}C$ were examined using a four point probe, HRXRD, FE-SEM, TEM, AES, and SPM, respectively. The sheet resistance of the NiSi layer was 12${\Omega}$/□ regardless of the thickness of the ${\alpha}$-Si and kept stable even after the additional annealing process. The thickness of the NiSi layer was 30 nm with excellent uniformity and the surface roughness was maintained under 2 nm after the annealing. Accordingly, our result implies that the low temperature Cat-CVD process with proposed films stack sequence may have more advantages than the conventional CVD process for nano scale NiSi applications.

Preparation and Electrochemical Performance of Electrode Supported La0.75Sr0.25Ga0.8Mg0.16Fe0.04O3-δ Solid Oxide Fuel Cells

  • Yu, Ji-Haeng;Park, Sang-Woon;Woo, Sang-Kuk
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.479-484
    • /
    • 2011
  • In this paper, investigations of thick film $La_{0.75}Sr_{0.25}Ga_{0.8}Mg_{0.16}Fe_{0.04}O_{3-{\delta}}$ (LSGMF) cells fabricated via spin coating on either NiO-YSZ anode or $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_3$ (LSGF) cathode substrates are presented. A La-doped $CeO_2$ (LDC) layer is inserted between NiO-YSZ and LSGMF in order to prevent reactions from occurring during co-firing. For the LSGF cathode-supported cell, no interlayer was required because the components of the cathode are the same as those of LSGMF with the exception of Mg. An LSGMF electrolyte slurry was deposited homogeneously on the porous supports via spin coating. The current-voltage characteristics of the anode and cathode supported LSGMF cells at temperatures between $700^{\circ}C$ and $850^{\circ}C$ are described. The LSGF cathode supported cell demonstrates a theoretical OCV and a power density of ~420 mW $cm^2$ at $800^{\circ}C$, whereas the NiO-YSZ anode supported cell with the LDC interlayer demonstrates a maximum power density of ~350 mW $cm^2$ at $800^{\circ}C$, which decreased more rapidly than the cathode supported cell despite the presence of the LDC interlayer. Potential causes of the degradation at temperatures over $700^{\circ}C$ are also discussed.

Characterization and Fabrication of La(Sr)Fe(Co)O3-δ Infiltrated Cathode Support-Type Solid Oxide Fuel Cells (La(Sr)Fe(Co)O3-δ 침지법을 이용한 양극 지지형 SOFC 제조 및 출력 특성)

  • Hwang, Kuk-Jin;Kim, Min Kyu;Kim, Hanbit;Shin, Tae Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.501-506
    • /
    • 2019
  • To overcome the limitations of the conventional Ni anode-supported SOFCs, various types of ceramic anodes have been studied. However, these ceramic anodes are difficult to commercialize because of their low cell performances and difficulty in manufacturing anode-support typed SOFCs. Therefore, in this study, to use these ceramic anodes and take advantage of anode-supported SOFC, which can minimize ohmic loss from the thin electrolyte, we fabricated cathode support-typed SOFC. The cathode-support of LSCF-YSZ was prepared by the acid treatment of conventional Ni-YSZ (Yttria-stabilized Zirconia) anode-support, followed by the infiltration of LSCF to YSZ scaffold. The composite of $La(Sr)Ti(Ni)O_3$ and $Ce(Mn,Fe)O_2$ was used as the ceramic anode. The fabricated cathode-supported button cell showed a relatively low power density of $0.207Wcm^{-2}$ at $850^{\circ}C$; however, it is expected to show better performance through the optimization of the infiltration rate and thickness of LSCF-YSZ cathode-support layer.

An Oxidation Behavior with Heat-treatment in STS 304 and 316 (STS 304, 316강의 열처리에 따른 산화거동)

  • Lee, Kyung-Ku;Yoon, Dong-Ju;Ghi, Whe-Bong;Kang, Chang-Sug;Lee, Doh-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.3
    • /
    • pp.186-191
    • /
    • 1998
  • An oxidation behavior of 304 and 316 stainless steels were studied in dry air. After solution treatment, specimens were polished up to $1{\mu}m$ $A1_2O_3$ grade and then subjected to oxidation treatment in dry air at $800^{\circ}C{\sim}1200^{\circ}C$. The oxidation behavior between matrix and oxide scale was analyzed with SEM, EDS and XRD. When oxidation treatment was conducted at $1200^{\circ}C$, large thickness of Fe oxide scale was formed on top of surface and fine $(Cr,Fe)_2O_3$ oxide film was formed below it. Cr rich zone existed at interface between metal and $(Cr,Fe)_2O_3$ oxide layer, and it was believed that this zone acted as obstacle to oxidation. Most of Ni was detected at the interface between metal and $(Cr,Fe)_2O_3$ and also detected at the interface between $Fe_2O_3$ and $(Cr,Fe)_2O_3$.

  • PDF

Characteristic Evaluation of Iron Aluminide-Cu and Ni-P Coated $SiC_p$ Preform Fabricated by Reactive Sintering Process (반응소결법으로 제조한 Iron Aluminide-Cu 및 Ni-P 피복 $SiC_p$ 예비성형체의 특성평가)

  • Cha, Jae-Sang;Kim, Sung-Joon;Choi, Dap-Chun
    • Journal of Korea Foundry Society
    • /
    • v.22 no.1
    • /
    • pp.42-48
    • /
    • 2002
  • Effects of coating treatment of metallic Cu, Ni-P film on $SiC_p$, for $SiC_p$/iron aluminide composites were studied. Porous hybrid preforms were fabricated by reactive sintering after mixing the coated $SiC_p$, Fe and Al powders. Then the final composites were manufactured by squeeze casting after pouring AC4C Al alloy melts in preforms. The change of reactive temperature, density, microstructure of the preforms and microstructure of the composites were investigated. The exprimental results were summarized as follows. The thickness of Cu and Ni-P metallic layer formed on $SiC_p$ by electroless plating method were about $0.5{\mu}m$ and coated uniformly. There was no remakable change in the ignition temperature with variation of the mixing ratio of Fe and Al powder while in the case of coated $SiC_p$ it was lower about $20^{\circ}C$ than in the non-coated $SiC_p$. The maximum reaction temperature increased with increasing Al contents, but decreased with increasing $SiC_p$ contents. Expansion ratio of preform after reactive sintering increased with amount of Cu coated $SiC_p$. In the case of Fe-70at.%Al, the expansion ratio was about 7% up to 8wt.% of $SiC_p$, addition but further addition of $SiC_p$, increased the ratio significantly. And in the case of Fe-50 and 60at.%Al, it was about 20% up to 16wt.% of $SiC_p$ addition and about 28% in 24wt.% of $SiC_p$, addition. The microstructures of compounds showed that the grains became finer as amount of $SiC_p$, and mixing ratio of iron powder increased and the shape of compounds was changed gradually from irregular to spheroidal.