Comparative Study of Ni effect on the Corrosion Behavior of Low Alloy Steels in FGD and Acid Rain Environments

산성비 및 배연탈황설비 환경에서 Ni 첨가에 따른 저합금강의 내식성 비교연구

  • Han, Jun-Hee (Sungkyunkwan University, Department of Advanced Materials Engineering) ;
  • Nguyen, Dang-Nam (Sungkyunkwan University, Department of Advanced Materials Engineering) ;
  • Jang, Young-Wook (Sungkyunkwan University, Department of Advanced Materials Engineering) ;
  • Kim, Jung-Gu (Sungkyunkwan University, Department of Advanced Materials Engineering)
  • 한준희 (성균관대학교 신소재공학과) ;
  • ;
  • 장영욱 (성균관대학교 신소재공학과) ;
  • 김정구 (성균관대학교 신소재공학과)
  • Received : 2009.04.27
  • Published : 2009.09.25

Abstract

The alloying effect of a small amount of nickel on low alloy steel for application to flue gas desulfurization(FGD) systems was studied. The structural characteristics of the rust layer were investigated by scanning electron microscopy(SEM). The electrochemical properties were examined by means of potentiostatic polarization test, potentiodynamic polarization test, and electrochemical impedance spectroscopy(EIS) in a modified green death solution of 16.9 vol.% $H_2SO_4$+0.35 vol.% HCl at $60^{\circ}C$ and an acid rain solution of $6.25{\times}10^{-5}M\;H_2SO_4+5.5{\times}10^{-3}M\;NaCl$ at room temperature. It was found that as the amount of nickel increased, the corrosion rate increased in the modified green death solution, which seemed to result from micro-galvanic corrosion between NiS and alloy matrix. In acid rain solution, the corrosion rate decreased as the amount of nickel increased due to the repulsive force of $NiFe_2O_4$ rust against $Cl^-$ ions by electronegativity.

Keywords

Acknowledgement

Supported by : POSCO

References

  1. W. J. Russell, American Chemical Society Symposium Series 349, p. 37, Washington D.C., USA (1987)
  2. F. H. Haynie, American Chemical Society Symposium Series 318, p. 163, Washington D.C., USA (1986)
  3. S. H. Lee and K. J. Jeong, International Corrosion Engineering Conference, p.20, Seoul, Korea (2007)
  4. M. S. Kang, B. S. Lee, H. Y. Chang, T. E. Jin, and I. S. So, Corrosion Science and Technology 6, 2 (2007)
  5. J. Y. Park and K. J. Jeong, POSCO Research Report 12, 23 (2007)
  6. S. T. Kim, Y. S. Park, and H. J. Kim, Corrosion Science and Technology 31, 2 (2002)
  7. H. G. Jung, J. Y. Yoo, and K. Y. Kim, J. Kor. Inst. Met. & Mater. 42, 12 (2004)
  8. J. J. Shim, Y. S. Choi, and J. G. Kim, J. Kor. Inst. Met. & Mater. 41, 9 (2003)
  9. A. Usami, M. Okushima, S. Sakamoto, S. Nishimura, T. Kusunoki, and K. Kojima, Nippon Steel Technical Report 90, 25 (2004)
  10. K. Asami and M. Kikuchi, Corr. Sci. 45, 2671 (2003) https://doi.org/10.1016/S0010-938X(03)00070-2
  11. J. G. Kim and R. A. Buchanan, Corr. Sci. 9, 658 (1994)
  12. D. P. Le, W. S. Ji, J. G. Kim, K. J. Jeong, and S. H. Lee, Corr. Sci. 50, 1195 (2008) https://doi.org/10.1016/j.corsci.2007.11.027
  13. J. J. Shim, Y. S. Choi, and J. G. Kim, J. Kor. Inst. Met. & Mater. 41, 585 (2003)
  14. R. Cottis and S. Turgoose, in Electrochemical Impedance and Noise, p. 43, NACE, Houston, TX (1999)
  15. T. Nishimura, H. Katayamo, K. Noda, and T. Kodama, Corrosion 56, 935 (2000) https://doi.org/10.5006/1.3280597
  16. D. A Jones, Priciples and Prevention of Corrosion, second ed., p.75, Prentice Hall (1996)
  17. M. Kimura, Corr. Sci. 47, 10 (2005) https://doi.org/10.1016/j.corsci.2005.04.005
  18. K. Noda, T. Nishimura, H. Masuda, and T. Kodama, Corrosion Science and Technology 31, 1 (2002)
  19. T. Mizoguchi, Corr. Sci. 47, 10 (2005) https://doi.org/10.1016/j.corsci.2004.10.017
  20. G. Wranglen, Corr. Sci. 14, 331 (1974) https://doi.org/10.1016/S0010-938X(74)80047-8
  21. R. Cottis and S. Turgoose, in Electrochemical Impedance and Noise, p. 43, NACE, Houston, TX (1999)