DOI QR코드

DOI QR Code

Characterization and Fabrication of La(Sr)Fe(Co)O3-δ Infiltrated Cathode Support-Type Solid Oxide Fuel Cells

La(Sr)Fe(Co)O3-δ 침지법을 이용한 양극 지지형 SOFC 제조 및 출력 특성

  • Hwang, Kuk-Jin (Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology (KICET)) ;
  • Kim, Min Kyu (Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology (KICET)) ;
  • Kim, Hanbit (Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology (KICET)) ;
  • Shin, Tae Ho (Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology (KICET))
  • 황국진 (한국세라믹기술원 에너지환경소재본부) ;
  • 김민규 (한국세라믹기술원 에너지환경소재본부) ;
  • 김한빛 (한국세라믹기술원 에너지환경소재본부) ;
  • 신태호 (한국세라믹기술원 에너지환경소재본부)
  • Received : 2019.09.26
  • Accepted : 2019.10.17
  • Published : 2019.11.01

Abstract

To overcome the limitations of the conventional Ni anode-supported SOFCs, various types of ceramic anodes have been studied. However, these ceramic anodes are difficult to commercialize because of their low cell performances and difficulty in manufacturing anode-support typed SOFCs. Therefore, in this study, to use these ceramic anodes and take advantage of anode-supported SOFC, which can minimize ohmic loss from the thin electrolyte, we fabricated cathode support-typed SOFC. The cathode-support of LSCF-YSZ was prepared by the acid treatment of conventional Ni-YSZ (Yttria-stabilized Zirconia) anode-support, followed by the infiltration of LSCF to YSZ scaffold. The composite of $La(Sr)Ti(Ni)O_3$ and $Ce(Mn,Fe)O_2$ was used as the ceramic anode. The fabricated cathode-supported button cell showed a relatively low power density of $0.207Wcm^{-2}$ at $850^{\circ}C$; however, it is expected to show better performance through the optimization of the infiltration rate and thickness of LSCF-YSZ cathode-support layer.

Keywords

References

  1. M. Z. Jacobson, W. G. Colella, and D. M. Golden, Science, 308, 1901 (2005). [DOI: https://doi.org/10.1126/science.1109157]
  2. R. F. Service, Science, 285, 682 (1999). [DOI: https://doi.org/10.1126/science.285.5428.682]
  3. B.C.H. Steele and A. Heinzel, Nature, 414, 345 (2001). [DOI: https://doi.org/10.1038/35104620]
  4. B.C.H. Steele, Nature, 400, 619 (1999). [DOI: https://doi.org/10.1038/23144]
  5. N. Q. Minh, J. Am. Ceram. Soc., 76, 563 (1993). [DOI: https://doi.org/10.1111/j.1151-2916.1993.tb03645.x]
  6. S. C. Singhal, Solid State Ionics, 135, 305 (2000). [DOI: https://doi.org/10.1016/S0167-2738(00)00452-5]
  7. N. Q. Ming, Solid State Ionics, 174, 271 (2004). [DOI: https://doi.org/10.1016/j.ssi.2004.07.042]
  8. E. S. Hecht, G. K. Gupta, H. Zhu, A. M. Dean, R. J. Kee, L. Maier, and O. Deutschmann, Appl. Catal., A, 295, 40 (2005). [DOI: https://doi.org/10.1016/j.apcata.2005.08.003]
  9. J. H. Koh, Y. S. Yoo, J. W. Park, and H. C. Lim, Solid State Ionics, 149, 157 (2002). [DOI: https://doi.org/10.1016/S0167-2738(02)00243-6]
  10. N. M. Sammes, Y. Du, and R. Bove, J. Power Sources, 145, 428 (2005). [DOI: https://doi.org/10.1016/j.powsour.2005.01.079]
  11. E. P. Murray, T. Tasi, and S. A. Barnett, Nature, 400, 649 (1999). [DOI: https://doi.org/10.1038/23220]
  12. P. Huang, A. Horky, and A. Petric, J. Am. Ceram. Soc., 82, 2402 (1999). [DOI: https://doi.org/10.1111/j.1151-2916.1999.tb02096.x]
  13. B.C.H. Steele, I. Kelly, H. Middleton, and R. Rudkin, Solid State Ionics, 28, 1547 (1988). [DOI: https://doi.org/10.1016/0167-2738(88)90417-1]
  14. S. Mcintosh and R. J. Gorte, Chem. Rev., 104, 4845 (2004). [DOI: https://doi.org/10.1021/cr020725g]
  15. T. Kim, G. Liu, M. Boaro, S. I. Lee, J. M. Vohs, R. J. Gorte, O. H. Al-Madhi, and B. O. Dabbousi, J. Power Sources, 155, 231 (2006). [DOI: https://doi.org/10.1016/j.powsour.2005.05.001]
  16. S. W. Tao, J.T.S. Irvine, and J. A. Kilner, ADV. Mater., 17, 1734 (2005). [DOI: https://doi.org/10.1002/adma.200402007]
  17. H. He, R. J. Gorte, and J. M. Vohs, Electrochem. Solid-State Lett., 8, A279 (2005). [DOI: https://doi.org/10.1149/1.1896469]
  18. Y. H. Huang, G. Liang, M. Croft, M. Lehtimaki, M. Karppinen, and J. B. Goodenough, Chem. Mater., 21, 2319 (2009). [DOI: https://doi.org/10.1021/cm8033643]
  19. D. Neagu and J.T.S. Irvine, Chem. Mater., 22, 5042 (2010). [DOI: https://doi.org/10.1021/cm101508w]
  20. T. H. Shin, S. Ida, and T. Ishihara, J. Am. Chem. Soc., 133, 19399 (2011). [DOI: https://doi.org/10.1021/ja206278f]
  21. C. Yang, Z. Yang, C. Jin, M. Liu, and F. Chen, Int. J. Hydrogen Energy, 38, 11202 (2013). [DOI: https://doi.org/10.1016/j.ijhydene.2013.06.086]
  22. H. Kim, C. da Rosa, M. Boaro, J. M. Vohs, and R. J. Gorte, J. Am Cerm. Soc., 85, 1473 (2002). [DOI: https://doi.org/10.1111/j.1151-2916.2002.tb00299.x]
  23. D. Neagu, G. Tsekouras, D. N. Miller, H. Menard, and J.T.S. Irvine, Nat. Chem., 5, 916 (2013). [DOI: https://doi.org/10.1038/nchem.1773]
  24. K. J. Kim, T. H. Shin, and K. T. Lee, J. Alloys Compd., 787, 1143 (2019). [DOI: https://doi.org/10.1016/j.jallcom.2019.02.180]
  25. Q. Huang, R. Hui, B. Wang, and J. Zhang, Electrochim. Acta, 52, 8144 (2009). [DOI: https://doi.org/10.1016/j.electacta.2007.05.071]
  26. C. Korte, A. Peters, J. Janek, D.Hesse, and N. Zakharov, Phys. Chem. Chem. Phys., 10, 4623 (2008). [DOI: https://doi.org/10.1039/B801675E]