• Title/Summary/Keyword: Fastening Method

Search Result 105, Processing Time 0.021 seconds

Effect on the Stress and Displacement of Aluminum Profiles Fastening Method (알루미늄 프로파일의 체결방법이 응력과 변위에 미치는 영향)

  • Hur, Jang-Wook;Shin, Baek-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.99-104
    • /
    • 2015
  • This study analyzed the effects on displacement and stress as a result of improving the profile fastening method targeting rectangular-shaped and cube-shaped specimens. For the rectangular-shaped specimens, the improved fastening method reduced maximum displacement to 41.7% and maximum stress to 18.3% compared to the existing fastening method. For the cube-shaped specimens, maximum displacement and maximum stress results were found to be similar to those of the rectangular-shaped specimens. Thus, as a result of comparing the stress and displacement of the existing and improved fastening methods, it was found that the improved fastening method is superior to the existing fastening method in terms of load support.

Experimental Study on the Dynamic Characteristics of a Missile Structure Depending on Fastening Method (체결 방식에 따른 유도탄의 동적 특성에 관한 실험적 연구)

  • Jeon, Ho-Chan;Song, Ohseop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.452-459
    • /
    • 2019
  • In order to design and manufacture structures such as a guided missile, assembly process with fastener is an essential method of fabrication. In this study, the dynamic characteristics of a cylindrical structure with bolted joints were studied using experimental methods. The change of the natural frequency of the structure with the change of the fastening method and the tightening torque were measured by the test and the finite element analysis was performed using the stiffness model of the fastening part according to the fastening method and compared with the test results.

A Study on the Pulling Force Characteristic of the Reverse Screw for the Metal Fastening Method (Metal Fastening 공법을 위한 Reverse Screw의 견인력 특성에 관한 연구)

  • Kim, Tae-Hyung;Lee, Seong-Wook;Han, Geun-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.93-98
    • /
    • 2010
  • The metal fastening method is the new technology to repair cracks in the casting material using specially designed reverse screws. In this study, we conduct the finite element analysis to analyze the pulling force characteristic of a reverse screw, the core component of the metal fastening method, with respect to the change of the applying torque, frictional coefficient and front screw angle. The simplified analysis model with single screw pitch is proposed for convergency of the non-linear contact analysis. As a results, the pulling force of a reverse screw increase in proportion to the applying torque but exponentially decrease according to frictional coefficient. And also we can find the optimum front screw angle with the largest pulling force is $20^{\circ}$.

The Parametric Study on the Performance Characteristics of Elastic Rail Fastening System on the Sharp Curved Track (급곡선 탄성레일체결장치의 거동특성에 미치는 매개변수 연구)

  • Baik, Chan-Ho;Joo, Bong-Gyu;Choi, Jung-Youl;Choi, Il-Yoon;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2163-2173
    • /
    • 2011
  • In this study, the deformations and stresses occurred in the elastic rail fastening system were evaluated according to applied extreme track forces based on various field conditions, track curvature and poor properties. The purpose of this study is to establish a method for efficient management and suggest guide line for track construction in order to secure the performance quality of the elastic rail fastening system on the sharp curved track.. Therefore, initial construction qualities of rail and concrete bed, initial clamping force and applied extreme track forces were used into experiment as several parameters. Using these test results, the performance characteristics of the elastic rail fastening system were also evaluated. As a result, it suggested the method to secure long-term durability of fastening system and comparing sharp curved track to results on field test.

  • PDF

Study on CNC plasma-cutting worktable with improved lifetime (CNC 플라즈마 절단 작업테이블의 수명 향상에 관한 연구)

  • Na, Yeong-min;Lee, Hyun-seok;Kang, Tae-hun;Park, Jong-kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.112-123
    • /
    • 2015
  • There are many systems for cutting plates or pipes into a desired shape. A typical system is a plasma cutter. It uses plasma, which means that an effective design of the table supporting the workpiece is an important issue in order to ensure a long operational career. Conventional roller-support worktables have a short lifespan due to scratches from the plasma, and it is also difficult to maintain the roller balance. By using a bolt-fastening method, deformation and failure of the final product can occur due to the stress concentration at bolting points. To escape these issues, a polygon support and bracket fastening method was designed. Due to polygons having a number of support surfaces, when one surface has been damaged, it is possible to reuse the support by utilizing a different surface. The bracket-fastening method can extend the worktable lifetime and increase productivity by reducing stress concentration. In this paper, the polygon support/bracket-fastening method is compared with existing technologies. Consequently, performance benchmarks are verified through a structure analysis and experimentation.

Seismic performance evaluations of modular house having 4-clip fastening method (4-클립 체결방식을 갖는 모듈러 하우스의 내진성능평가)

  • Lim, Hyeon-jin;Cho, Chang-Geun;Shin, Jung-Kang;Lee, Sun-Joo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.3
    • /
    • pp.41-48
    • /
    • 2022
  • The purpose of this study is to evaluate seismic performances of a modular house system developed by a simple 4-clip fastening method and double metal assembly made of lightweight metals. In order to evaluate structural and non-structural seismic performances of the system. Shaking table test was carried out with full-scale modular units, and a nonlinear pushover analysis was performed to obtain suitable seismic responses for story drifts, displacements, force resistances and dynamic properties of the system. Through 3D analysis and shaking table test, the current method of lightweight modular metal unit assembly and systems with seismic performance of a 4-clip fastening type modular house were demonstrated safe and effective to seismic design.

A Study on Method of Predicting Failure Rates of Fastening Parts (체결 부품 고장률 산출 방안에 관한 연구)

  • Jeong, Da-Un;Yun, Hui-Sung;Kwon, Dong-Soo;Lee, Seung-Hun
    • Journal of Applied Reliability
    • /
    • v.11 no.3
    • /
    • pp.305-318
    • /
    • 2011
  • In the statement of logistics reliability prediction methodology, all components should be managed as the analysis objectives. However, in some reliability prediction of weapon systems, fastening parts, e.g., screws, bolts and nuts, have been frequently ignored because some organizations related to weapon systems have emphasized that those parts are not significant in their failures rate and functions. In this paper, failure rates, modes, and distributions were presented to prove that fastening parts should be included in reliability prediction objectives. Also, failure rate prediction methods of fastening parts are presented and compared.

A study on the fastening performance and finger function of the cerebral palsied (뇌성마비자의 의복여밈 수행능력과 수지기능)

  • 김순분;함옥상;서승록
    • Journal of the Ergonomics Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.45-62
    • /
    • 1993
  • This study was aimed to obtain the available information for the clothing constru- ction according to the traits of the cerebral palsied. For this purpose, their abilities of eleven methods seven of fastening performance and seven finger functions were tested and their correlationships were clarified. The results are as follows : 1. The length of time needed to perform each fastening method in descending order is as follows : small button > small snap > culumn button > large button > middle button > large snap > separating zipper > velcro. As the spastic has better function than the athetoid in the performance of all fastening methods, there was a significant difference between the types of handicap and between the handi- capped and the normal, except for velcro fastening style in which there was no significant differ- ence between the types of handicap. 2. In finger functions of the cerebral palsied, according to the types of handicap there was no significant difference among grip, palm fixation and hands coordination, howefer there were significant differences among pulp pinching, lateral pinching, finger rolling and lifting control. As to the correlation between the ability of fastening performance and finger function, there was a high significant correlation between the length of time needed to perform each fastenting and finger function of hands co ordination, and that of finger rolling; and there was a significant correlation between the length of time and pulp pinching, and laternal pinching.

  • PDF

Insulation Method and Performance Evaluation for Fastening Unit of ALC Pannel-Curtain wall (ALC 패널 커튼월의 패스닝 유닛의 단열 방법과 성능 평가)

  • Kim, Bongl-Joo;Kim, Kyeong-A;Park, Je-Min
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.107-110
    • /
    • 2011
  • In this study is to improve insulation performance that are the most weak insulation part of fastening unit of the curtain wall. It was produced that thought out to minimize mullion and connecting part, and evaluated performance that make a layer of insulation in the middle by using vibration-proof rubber or silicon. Vibration-proof rubber insulation is 2.6℃~4.0℃ higher and silicon insulation is 2.4℃ higher than non-insulation. Therefore the insulating layer of fastening unit is necessary.

  • PDF

Experimental Study on the Shock Response of a Cylindrical Structure with the Bolted Joint (조인트를 가진 원통형 구조물의 충격 응답에 관한 실험적 연구)

  • Jeon, Ho-Chan;Song, Ohseop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.581-589
    • /
    • 2019
  • Guided missiles assembled with the bolted joint are subjected to various shock loading conditions while flying in the air and operating on the ground or platform. Especially, It is important to analyze the effect of the shock load on the structure because it affects the structure for a short duration time while its acceleration magnitude is quite large. In this study, mechanical shock tests on the structure with the bolted joint have been carried out to measure the acceleration changes of the structure against external shock loads by electrical exciter. Variation of dynamic characteristics of a structure with fastening methods and fastening forces has been investigated through Shock Response Spectrum analysis.