• Title/Summary/Keyword: False Detection

Search Result 1,207, Processing Time 0.034 seconds

Adaptive Target Detection Algorithm Using Gray Difference, Similarity and Adjacency (밝기 차, 유사성, 근접성을 이용한 적응적 표적 검출 알고리즘)

  • Lee, Eun-Young;Gu, Eun-Hye;Yoo, Hyun-Jung;Park, Kil-Houm
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.9
    • /
    • pp.736-743
    • /
    • 2013
  • In IRST(infrared search and track) system, the small target detection is very difficult because the IR(infrared) image have various clutter and sensor noise. The noise and clutter similar to the target intensity value produce many false alarms. In this paper. We propose the adaptive detection method which obtains optimal target detection using the image intensity information and the prior information of target. In order to enhance the target, we apply the human visual system. we determine the adaptive threshold value using image intensity and distance measure in target enhancement image. The experimental results indicate that the proposed method can efficiently extract target region in various IR images.

Flame detection algorithm using adaptive threshold in thermal video (적응 문턱치를 이용한 열영상 화염 검출 알고리즘)

  • Jeong, Soo-Young;Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.4
    • /
    • pp.91-96
    • /
    • 2014
  • This paper proposed an adaptive threshold method for detecting flame candidate regions in a infrared image and it adapts according to the contrast and intensity changes in the image. Conventional flame detection systems uses fixed threshold method since surveillance environment does not change, once the system installed. But it needs a adaptive threshold method as requirements of surveillance system has changed. The proposed adaptive threshold algorithm uses the dynamic behavior of flame as featured parameter. The test result is analysed by comparing test result of proposed adaptive threshold algorithm and conventional fixed threshold method. The analysed data shows, the proposed method has 91.42% of correct detection rate and false detection is reduced by 20% comparing to the conventional method.

A Robust Crack Filter Based on Local Gray Level Variation and Multiscale Analysis for Automatic Crack Detection in X-ray Images

  • Peng, Shao-Hu;Nam, Hyun-Do
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.1035-1041
    • /
    • 2016
  • Internal cracks in products are invisible and can lead to fatal crashes or damage. Since X-rays can penetrate materials and be attenuated according to the material’s thickness and density, they have rapidly become the accepted technology for non-destructive inspection of internal cracks. This paper presents a robust crack filter based on local gray level variation and multiscale analysis for automatic detection of cracks in X-ray images. The proposed filter takes advantage of the image gray level and its local variations to detect cracks in the X-ray image. To overcome the problems of image noise and the non-uniform intensity of the X-ray image, a new method of estimating the local gray level variation is proposed in this paper. In order to detect various sizes of crack, this paper proposes using different neighboring distances to construct an image pyramid for multiscale analysis. By use of local gray level variation and multiscale analysis, the proposed crack filter is able to detect cracks of various sizes in X-ray images while contending with the problems of noise and non-uniform intensity. Experimental results show that the proposed crack filter outperforms the Gaussian model based crack filter and the LBP model based method in terms of detection accuracy, false detection ratio and processing speed.

Rear-Approaching Vehicle Detection Research using Region of Interesting based on Faster R-CNN (Faster R-CNN 기반의 관심영역 유사도를 이용한 후방 접근차량 검출 연구)

  • Lee, Yeung-Hak;Kim, Joong-Soo;Shim, Jae-Chnag
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.235-241
    • /
    • 2019
  • In this paper, we propose a new algorithm to detect rear-approaching vehicle using the frame similarity of ROI(Region of Interest) based on deep learning algorithm for use in agricultural machinery systems. Since the vehicle detection system for agricultural machinery needs to detect only a vehicle approaching from the rear. we use Faster R-CNN model that shows excellent accuracy rate in deep learning for vehicle detection. And we proposed an algorithm that uses the frame similarity for ROI using constrained conditions. Experimental results show that the proposed method has a detection rate of 99.9% and reduced the false positive values.

Feature Engineering and Evaluation for Android Malware Detection Scheme

  • Jaemin Jung;Jihyeon Park;Seong-je Cho;Sangchul Han;Minkyu Park;Hsin-Hung Cho
    • Journal of Internet Technology
    • /
    • v.22 no.2
    • /
    • pp.423-439
    • /
    • 2021
  • Android is one of the most popular platforms for the mobile and Internet of Things (IoT) devices. This popularity has made Android-based devices a valuable target of malicious apps. Thus, it is essential to devise automatic and portable malware detection approaches for the Android platform. There are many studies on detecting mobile malware using machine learning techniques. In these studies, however, the dataset is imbalanced or is not large enough to generalize the machine learning model, or the dimensionality of features is too high to apply nonlinear classifiers. In this article, we propose a machine learning-based Android malware detection scheme that uses API calls and permissions as features. To restrict the dimensionality of features, we propose minimal domain knowledge-based and Gini importance-based feature selection. We construct large and balanced real-world datasets to build a generalized and non-skewed model and verify our model through experiments. We achieve 96.51% classification accuracy using Random Forest classifier with low overhead. In addition, we also provide an analysis on falsely classified samples in detail. The analysis results show that API hiding can degrade the performance of API call information-based malware detection systems.

The Clinical Implication of MAGE Gene Detection in Bronchial Washing Fluid in Routine Practice (기관지 세척액 검사를 이용한 MAGE 유전자 검사의 임상적 의의)

  • Lee, Seung-June;Yun, Myung-Jae;Lee, Seong-Tae;Oh, Hye-Jin;Song, Sook-Hee;Sohn, In;Kim, Yeon-Jung;Han, Kyung-Hoon;Kim, Sun-Hee;Kim, Su-Hyun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.69 no.6
    • /
    • pp.442-449
    • /
    • 2010
  • Background: Melanoma antigen genes (MAGE) are expressed in many human malignant cells and are silent in normal tissues other than in testis and in placenta. But MAGE expression in benign lung diseases, such as pulmonary tuberculosis or cases with severe inflammation, needs further evaluation to overcome false-positive findings. We evaluated detection rates of the melanoma antigen genes (MAGE) RT-nested PCR in bronchoscopic washing samples from patients with benign lung disease, as well as in patients with malignancies. Methods: Bronchial washing fluid from 122 patients was used for cytological examination and MAGE gene detection using RT-nested-PCR of common A1-6 mRNA. We compared the results from the RT-nested PCR and the pathologic or bacteriologic diagnosis. We also analyzed the expression rate and false positive rate of MAGE gene. Results: Among 122 subjects, lung cancer was diagnosed in 23 patients and benign lung disease was diagnosed in 99 patients. In patients with lung cancer, the positive rate of MAGE expression was 47.8% (11/23) and in benign lung disease group, the expression rate was 14.1% (14/99). Among benign lung disease group, the expression rate of MAGE gene (25.0%) in patients with pulmonary tuberculosis (11/44) was especially high. Conclusion: MAGE A1-6 RT-nested PCR of bronchial washing fluid can be used as a complementary method in lung cancer, but that test results in a high false positive rate in tuberculosis patients.

Monitoring-Based Secure Data Aggregation Protocol against a Compromised Aggregator in Wireless Sensor Networks (무선 센서 네트워크에서 Compromised Aggregator에 대응을 위한 모니터링 기반 시큐어 데이터 병합 프로토콜)

  • Anuparp, Boonsongsrikul;Lhee, Kyung-Suk;Park, Seung-Kyu
    • The KIPS Transactions:PartC
    • /
    • v.18C no.5
    • /
    • pp.303-316
    • /
    • 2011
  • Data aggregation is important in wireless sensor networks. However, it also introduces many security problems, one of which is that a compromised node may inject false data or drop a message during data aggregation. Most existing solutions rely on encryption, which however requires high computation and communication cost. But they can only detect the occurrence of an attack without finding the attacking node. This makes sensor nodes waste their energy in sending false data if attacks occur repeatedly. Even an existing work can identify the location of a false data injection attack but it has a limitation that at most 50% of total sensor nodes can participate in data transmission. Therefore, a novel approach is required such that it can identify an attacker and also increase the number of nodes which participate in data transmission. In this paper, we propose a monitoring-based secure data aggregation protocol to prevent against a compromised aggregator which injects false data or drops a message. The proposed protocol consists of aggregation tree construction and secure data aggregation. In secure data aggregation, we use integration of abnormal data detection with monitoring and a minimal cryptographic technique. The simulation results show the proposed protocol increases the number of participating nodes in data transmission to 95% of the total nodes. The proposed protocol also can identify the location of a compromised node which injects false data or drops a message. A communication overhead for tracing back a location of a compromised node is O(n) where n is the total number of nodes and the cost is the same or better than other existing solutions.

DSP Embedded Early Fire Detection Method Using IR Thermal Video

  • Kim, Won-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3475-3489
    • /
    • 2014
  • Here we present a simple flame detection method for an infrared (IR) thermal camera based real-time fire surveillance digital signal processor (DSP) system. Infrared thermal cameras are especially advantageous for unattended fire surveillance. All-weather monitoring is possible, regardless of illumination and climate conditions, and the data quantity to be processed is one-third that of color videos. Conventional IR camera-based fire detection methods used mainly pixel-based temporal correlation functions. In the temporal correlation function-based methods, temporal changes in pixel intensity generated by the irregular motion and spreading of the flame pixels are measured using correlation functions. The correlation values of non-flame regions are uniform, but the flame regions have irregular temporal correlation values. To satisfy the requirement of early detection, all fire detection techniques should be practically applied within a very short period of time. The conventional pixel-based correlation function is computationally intensive. In this paper, we propose an IR camera-based simple flame detection algorithm optimized with a compact embedded DSP system to achieve early detection. To reduce the computational load, block-based calculations are used to select the candidate flame region and measure the temporal motion of flames. These functions are used together to obtain the early flame detection algorithm. The proposed simple algorithm was tested to verify the required function and performance in real-time using IR test videos and a real-time DSP system. The findings indicated that the system detected the flames within 5 to 20 seconds, and had a correct flame detection ratio of 100% with an acceptable false detection ratio in video sequence level.

Design of NePID using Anomaly Traffic Analysis and Fuzzy Cognitive Maps (비정상 트래픽 분석과 퍼지인식도를 이용한 NePID 설계)

  • Kim, Hyeock-Jin;Ryu, Sang-Ryul;Lee, Se-Yul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.4
    • /
    • pp.811-817
    • /
    • 2009
  • The rapid growth of network based IT systems has resulted in continuous research of security issues. Probe intrusion detection is an area of increasing concerns in the internet community. Recently, a number of probe intrusion detection schemes have been proposed based on various technologies. However, the techniques, which have been applied in many systems, are useful only for the existing patterns of probe intrusion. They can not detect new patterns of probe intrusion. Therefore, it is necessary to develop a new Probe Intrusion Detection technology that can find new patterns of probe intrusion. In this paper, we proposed a new network based probe intrusion detector(NePID) using anomaly traffic analysis and fuzzy cognitive maps that can detect intrusion by the denial of services attack detection method utilizing the packet analyses. The probe intrusion detection using fuzzy cognitive maps capture and analyze the packet information to detect syn flooding attack. Using the result of the analysis of decision module, which adopts the fuzzy cognitive maps, the decision module measures the degree of risk of denial of service attack and trains the response module to deal with attacks. For the performance evaluation, the "IDS Evaluation Data Set" created by MIT was used. From the simulation we obtained the max-average true positive rate of 97.094% and the max-average false negative rate of 2.936%. The true positive error rate of the NePID is similar to that of Bernhard's true positive error rate.

Pedestrian Traffic Counting Using HoG Feature-Based Person Detection and Multi-Level Match Tracking (HoG 특징 기반 사람 탐지와 멀티레벨 매칭 추적을 이용한 보행자 통행량 측정 알고리즘)

  • Kang, Sung-Wook;Jung, Jin-dong;Seo, Hong-il;Lee, Hae-Yeoun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.8
    • /
    • pp.385-392
    • /
    • 2016
  • Market analysis for a business plain is required for the success in the modern world. Most important part in this analysis is pedestrian traffic counting. A traditional way for this is counting it in person. However, it causes high labor costs and mistakes. This paper proposes an automatic algorithm to measure the pedestrian traffic count using images with webcam. The proposed algorithm is composed of two parts: pedestrian area detection and movement tracking. In pedestrian area detection, moving blobs are extracted and pedestrian areas are detected using HoG features and Adaboost algorithm. In movement tracking, multi-level matching and false positive removal are applied to track pedestrian areas and count the pedestrian traffic. Multi-level matching is composed of 3 steps: (1) the similarity calculation between HoG area, (2) the similarity calculation of the estimated position with Kalman filtering, and (3) the similarity calculation of moving blobs in the pedestrian area detection. False positive removal is to remove invalid pedestrian area. To analyze the performance of the proposed algorithm, a comparison is performed with the previous human area detection and tracking algorithm. The proposed algorithm achieves 83.6% accuracy in the pedestrian traffic counting, which is better than the previous algorithm over 11%.