The Journal of Korean Institute of Communications and Information Sciences
/
v.38B
no.9
/
pp.736-743
/
2013
In IRST(infrared search and track) system, the small target detection is very difficult because the IR(infrared) image have various clutter and sensor noise. The noise and clutter similar to the target intensity value produce many false alarms. In this paper. We propose the adaptive detection method which obtains optimal target detection using the image intensity information and the prior information of target. In order to enhance the target, we apply the human visual system. we determine the adaptive threshold value using image intensity and distance measure in target enhancement image. The experimental results indicate that the proposed method can efficiently extract target region in various IR images.
Journal of Satellite, Information and Communications
/
v.9
no.4
/
pp.91-96
/
2014
This paper proposed an adaptive threshold method for detecting flame candidate regions in a infrared image and it adapts according to the contrast and intensity changes in the image. Conventional flame detection systems uses fixed threshold method since surveillance environment does not change, once the system installed. But it needs a adaptive threshold method as requirements of surveillance system has changed. The proposed adaptive threshold algorithm uses the dynamic behavior of flame as featured parameter. The test result is analysed by comparing test result of proposed adaptive threshold algorithm and conventional fixed threshold method. The analysed data shows, the proposed method has 91.42% of correct detection rate and false detection is reduced by 20% comparing to the conventional method.
Internal cracks in products are invisible and can lead to fatal crashes or damage. Since X-rays can penetrate materials and be attenuated according to the material’s thickness and density, they have rapidly become the accepted technology for non-destructive inspection of internal cracks. This paper presents a robust crack filter based on local gray level variation and multiscale analysis for automatic detection of cracks in X-ray images. The proposed filter takes advantage of the image gray level and its local variations to detect cracks in the X-ray image. To overcome the problems of image noise and the non-uniform intensity of the X-ray image, a new method of estimating the local gray level variation is proposed in this paper. In order to detect various sizes of crack, this paper proposes using different neighboring distances to construct an image pyramid for multiscale analysis. By use of local gray level variation and multiscale analysis, the proposed crack filter is able to detect cracks of various sizes in X-ray images while contending with the problems of noise and non-uniform intensity. Experimental results show that the proposed crack filter outperforms the Gaussian model based crack filter and the LBP model based method in terms of detection accuracy, false detection ratio and processing speed.
In this paper, we propose a new algorithm to detect rear-approaching vehicle using the frame similarity of ROI(Region of Interest) based on deep learning algorithm for use in agricultural machinery systems. Since the vehicle detection system for agricultural machinery needs to detect only a vehicle approaching from the rear. we use Faster R-CNN model that shows excellent accuracy rate in deep learning for vehicle detection. And we proposed an algorithm that uses the frame similarity for ROI using constrained conditions. Experimental results show that the proposed method has a detection rate of 99.9% and reduced the false positive values.
Jaemin Jung;Jihyeon Park;Seong-je Cho;Sangchul Han;Minkyu Park;Hsin-Hung Cho
Journal of Internet Technology
/
v.22
no.2
/
pp.423-439
/
2021
Android is one of the most popular platforms for the mobile and Internet of Things (IoT) devices. This popularity has made Android-based devices a valuable target of malicious apps. Thus, it is essential to devise automatic and portable malware detection approaches for the Android platform. There are many studies on detecting mobile malware using machine learning techniques. In these studies, however, the dataset is imbalanced or is not large enough to generalize the machine learning model, or the dimensionality of features is too high to apply nonlinear classifiers. In this article, we propose a machine learning-based Android malware detection scheme that uses API calls and permissions as features. To restrict the dimensionality of features, we propose minimal domain knowledge-based and Gini importance-based feature selection. We construct large and balanced real-world datasets to build a generalized and non-skewed model and verify our model through experiments. We achieve 96.51% classification accuracy using Random Forest classifier with low overhead. In addition, we also provide an analysis on falsely classified samples in detail. The analysis results show that API hiding can degrade the performance of API call information-based malware detection systems.
Background: Melanoma antigen genes (MAGE) are expressed in many human malignant cells and are silent in normal tissues other than in testis and in placenta. But MAGE expression in benign lung diseases, such as pulmonary tuberculosis or cases with severe inflammation, needs further evaluation to overcome false-positive findings. We evaluated detection rates of the melanoma antigen genes (MAGE) RT-nested PCR in bronchoscopic washing samples from patients with benign lung disease, as well as in patients with malignancies. Methods: Bronchial washing fluid from 122 patients was used for cytological examination and MAGE gene detection using RT-nested-PCR of common A1-6 mRNA. We compared the results from the RT-nested PCR and the pathologic or bacteriologic diagnosis. We also analyzed the expression rate and false positive rate of MAGE gene. Results: Among 122 subjects, lung cancer was diagnosed in 23 patients and benign lung disease was diagnosed in 99 patients. In patients with lung cancer, the positive rate of MAGE expression was 47.8% (11/23) and in benign lung disease group, the expression rate was 14.1% (14/99). Among benign lung disease group, the expression rate of MAGE gene (25.0%) in patients with pulmonary tuberculosis (11/44) was especially high. Conclusion: MAGE A1-6 RT-nested PCR of bronchial washing fluid can be used as a complementary method in lung cancer, but that test results in a high false positive rate in tuberculosis patients.
Data aggregation is important in wireless sensor networks. However, it also introduces many security problems, one of which is that a compromised node may inject false data or drop a message during data aggregation. Most existing solutions rely on encryption, which however requires high computation and communication cost. But they can only detect the occurrence of an attack without finding the attacking node. This makes sensor nodes waste their energy in sending false data if attacks occur repeatedly. Even an existing work can identify the location of a false data injection attack but it has a limitation that at most 50% of total sensor nodes can participate in data transmission. Therefore, a novel approach is required such that it can identify an attacker and also increase the number of nodes which participate in data transmission. In this paper, we propose a monitoring-based secure data aggregation protocol to prevent against a compromised aggregator which injects false data or drops a message. The proposed protocol consists of aggregation tree construction and secure data aggregation. In secure data aggregation, we use integration of abnormal data detection with monitoring and a minimal cryptographic technique. The simulation results show the proposed protocol increases the number of participating nodes in data transmission to 95% of the total nodes. The proposed protocol also can identify the location of a compromised node which injects false data or drops a message. A communication overhead for tracing back a location of a compromised node is O(n) where n is the total number of nodes and the cost is the same or better than other existing solutions.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.8
no.10
/
pp.3475-3489
/
2014
Here we present a simple flame detection method for an infrared (IR) thermal camera based real-time fire surveillance digital signal processor (DSP) system. Infrared thermal cameras are especially advantageous for unattended fire surveillance. All-weather monitoring is possible, regardless of illumination and climate conditions, and the data quantity to be processed is one-third that of color videos. Conventional IR camera-based fire detection methods used mainly pixel-based temporal correlation functions. In the temporal correlation function-based methods, temporal changes in pixel intensity generated by the irregular motion and spreading of the flame pixels are measured using correlation functions. The correlation values of non-flame regions are uniform, but the flame regions have irregular temporal correlation values. To satisfy the requirement of early detection, all fire detection techniques should be practically applied within a very short period of time. The conventional pixel-based correlation function is computationally intensive. In this paper, we propose an IR camera-based simple flame detection algorithm optimized with a compact embedded DSP system to achieve early detection. To reduce the computational load, block-based calculations are used to select the candidate flame region and measure the temporal motion of flames. These functions are used together to obtain the early flame detection algorithm. The proposed simple algorithm was tested to verify the required function and performance in real-time using IR test videos and a real-time DSP system. The findings indicated that the system detected the flames within 5 to 20 seconds, and had a correct flame detection ratio of 100% with an acceptable false detection ratio in video sequence level.
Journal of the Korea Academia-Industrial cooperation Society
/
v.10
no.4
/
pp.811-817
/
2009
The rapid growth of network based IT systems has resulted in continuous research of security issues. Probe intrusion detection is an area of increasing concerns in the internet community. Recently, a number of probe intrusion detection schemes have been proposed based on various technologies. However, the techniques, which have been applied in many systems, are useful only for the existing patterns of probe intrusion. They can not detect new patterns of probe intrusion. Therefore, it is necessary to develop a new Probe Intrusion Detection technology that can find new patterns of probe intrusion. In this paper, we proposed a new network based probe intrusion detector(NePID) using anomaly traffic analysis and fuzzy cognitive maps that can detect intrusion by the denial of services attack detection method utilizing the packet analyses. The probe intrusion detection using fuzzy cognitive maps capture and analyze the packet information to detect syn flooding attack. Using the result of the analysis of decision module, which adopts the fuzzy cognitive maps, the decision module measures the degree of risk of denial of service attack and trains the response module to deal with attacks. For the performance evaluation, the "IDS Evaluation Data Set" created by MIT was used. From the simulation we obtained the max-average true positive rate of 97.094% and the max-average false negative rate of 2.936%. The true positive error rate of the NePID is similar to that of Bernhard's true positive error rate.
KIPS Transactions on Software and Data Engineering
/
v.5
no.8
/
pp.385-392
/
2016
Market analysis for a business plain is required for the success in the modern world. Most important part in this analysis is pedestrian traffic counting. A traditional way for this is counting it in person. However, it causes high labor costs and mistakes. This paper proposes an automatic algorithm to measure the pedestrian traffic count using images with webcam. The proposed algorithm is composed of two parts: pedestrian area detection and movement tracking. In pedestrian area detection, moving blobs are extracted and pedestrian areas are detected using HoG features and Adaboost algorithm. In movement tracking, multi-level matching and false positive removal are applied to track pedestrian areas and count the pedestrian traffic. Multi-level matching is composed of 3 steps: (1) the similarity calculation between HoG area, (2) the similarity calculation of the estimated position with Kalman filtering, and (3) the similarity calculation of moving blobs in the pedestrian area detection. False positive removal is to remove invalid pedestrian area. To analyze the performance of the proposed algorithm, a comparison is performed with the previous human area detection and tracking algorithm. The proposed algorithm achieves 83.6% accuracy in the pedestrian traffic counting, which is better than the previous algorithm over 11%.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.