
무선 센서 네트워크에서 Compromised Aggregator에 대응을 위한 모니터링 기반 시큐어 데이터 병합 프로토콜 303

무선 센서 네트워크에서 Compromised Aggregator에

대응을 위한 모니터링 기반 시큐어 데이터 병합 프로토콜

Boonsongsrikul, Anuparp†․이 경 석††․박 승 규†††

요 약

데이터 병합은 무선 센서 네트워크의 주요 기술이지만 다수의 보안 문제를 유발할 수 있으며, 이들 가운데 하나가 데이터 병합 과정 중의

compromised node에 의한 허위 데이터 삽입이나 메시지 누락이다. 이 문제에 대한 대부분의 기존 해결책은 암호화에 의존하고 있는데, 이들은

많은 연산량과 통신 부하를 필요로 한다. 이와 같은 요구 조건에도 불구하고 기존 방법들은 공격 노드의 탐지가 아닌 공격의 확인 기능만을 가

진다. 이러한 제약 사항은 공격이 반복적으로 발생하는 경우, 센서 노드의 에너지 낭비를 유발한다. 비록 기존의 한 연구에서 허위 데이터 삽입

점을 식별하는 기능을 제공하고 있지만, 이 방법은 전체 노드 중 최대 50%의 노드만이 데이터 전송에 참여하는 단점을 가진다. 따라서 공격자

확인이 가능할 뿐만 아니라, 동시에 데이터 전송에 참여하는 노드의 수를 증가시킬 수 있는 새로운 접근 방법이 요구된다. 본 논문에서는 허위

데이터 삽입 혹은 메시지 누락을 수행하는 compromised aggregator에 대한 대응을 위해 모니터링 기반 시큐어 데이터 병합 프로토콜을 제안한

다. 제안된 프로토콜은 크게 병합 트리 작성과 시큐어 데이터 병합으로 구성되는데, 시큐어 데이터 병합에는 모니터링을 기반으로 하는 비정상

데이터 삽입 탐지와 최소한의 암호화 기법이 사용된다. 시뮬레이션 결과에 따르면 제안된 프로토콜은 데이터 전송에 참여하는 노드의 수를

95% 수준으로 증가시키는 동시에, 허위 데이터 삽입 혹은 메시지 누락을 수행하는 compromised node의 탐지가 가능한 것으로 확인되었다. 한

편 제안된 프로토콜에서 compromised node를 추적하는데 요구하는 통신 오버헤드는 전체 노드의 수가 n일 때, O(n)으로 기존 연구보다 우수하

거나 유사한 수준을 가진다.

키워드 :무선 센서 네트워크, 데이터 병합, 보안, 허위 데이터 삽입, 서비스 거부 공격

Monitoring-Based Secure Data Aggregation Protocol

against a Compromised Aggregator in Wireless Sensor Networks

Boonsongsrikul, Anuparp†․Lhee, Kyung-Suk††․Park, Seung-Kyu†††

ABSTRACT

Data aggregation is important in wireless sensor networks. However, it also introduces many security problems, one of which is that a

compromised node may inject false data or drop a message during data aggregation. Most existing solutions rely on encryption, which

however requires high computation and communication cost. But they can only detect the occurrence of an attack without finding the

attacking node. This makes sensor nodes waste their energy in sending false data if attacks occur repeatedly. Even an existing work can

identify the location of a false data injection attack but it has a limitation that at most 50% of total sensor nodes can participate in data

transmission. Therefore, a novel approach is required such that it can identify an attacker and also increase the number of nodes which

participate in data transmission. In this paper, we propose a monitoring-based secure data aggregation protocol to prevent against a

compromised aggregator which injects false data or drops a message. The proposed protocol consists of aggregation tree construction and

secure data aggregation. In secure data aggregation, we use integration of abnormal data detection with monitoring and a minimal

cryptographic technique. The simulation results show the proposed protocol increases the number of participating nodes in data

transmission to 95% of the total nodes. The proposed protocol also can identify the location of a compromised node which injects false

data or drops a message. A communication overhead for tracing back a location of a compromised node is O(n) where n is the total

number of nodes and the cost is the same or better than other existing solutions.

Keywords : Wireless Sensor Networks, Data Aggregation, Security, False Data Injection, Energy Consumption

†준 회 원:아주대학교 정보통신공학과 박사과정
††정 회 원:전 아주대학교 정보컴퓨터공학부 조교수
†††정 회 원:아주대학교 정보통신대학 교수(교신저자)

논문접수: 2011년 5월 11일
수 정 일: 1차 2011년 7월 29일
심사완료: 2011년 8월 8일

http://dx.doi.org/10.3745/KIPSTC.2011.18C.5.303

304 정보처리학회논문지C 제18-C권 제5호(2011. 10)

1. Introduction

Data aggregation is important in wireless sensor

networks because it substantially reduces the

communication cost. However it also introduces many

security problems, one of which is that a compromised

node may inject false data during aggregation. This may

be difficult to detect because the data source is unknown

during the in-network processing.

Most existing schemes for detecting false data injection

use expensive encryption, which require high computation

and communication costs due to the complexity of the

encryption algorithm itself and the necessary key

distribution and management algorithm. They might be

too expensive for some sensors with limited resources

(slow CPU, small memory, weak transceiver, and small

battery capacity), substantially reducing the sensor

network's application functionality.

Most solutions can detect the occurrence of an attack,

but solutions merely discard an injected false aggregate

without finding the attacking node. As long as the

attacker hidden in the network keeps injecting false data,

the Base Station (BS) stops receiving correct data and

sensor nodes also waste their energy in sending false

data.

Recently researchers [1] proposed the lightweight

protocol in finding the false data injection attacker.

However, the solution has limitations: 1) the protocol

requires a specific aggregation tree that many external

nodes only monitors an internal node but cannot

participate in data aggregation and 2) the protocol does

not deal with an attacker which drops an aggregated

value.

To counter such problems, in this paper we propose a

monitoring-based secure data aggregation protocol to

prevent compromised aggregators from injecting false

data or dropping messages. Compared with other existing

schemes, the main advantages of the proposed protocol

are the following. The proposed protocol is applicable to

many sensors with limited resource. It also can locate the

attacking node so that stop occurring the attack. Note

that once the offending nodes are identified, they can be

easily handled. For example, the BS can broadcast the ID

of the offending nodes so that they are ignored by other

nodes in the next aggregation session. The proposed

protocol also improves over [1] by increasing the number

of nodes that transmit their reading values during the

aggregation session, therefore achieving better utilization

of the deployed sensors.

We assume that the attacker initially performs passive

attacks by eavesdropping on communications and learning

the formats of the sensor nodes’ data packets. After a

particular amount of time, the attacker performs active

attacks through a compromised node by either injecting

false data in data aggregation or dropping an aggregated

value.

2. Related work

Przydatek [10] proposed a secure Information

aggregation, which uses a statistical security property to

prevent false data injection attacks. However, there is

only one aggregator, so it does not scale well to large,

multi-hop sensor deployments. In addition, internal nodes

do not process sensing raw data but merely compute a

hash value using data from their two children. Therefore

this scheme requires deployment of many more sensors

than other schemes.

Yang [14] proposed a secure hop-by-hop data

aggregation protocol. This protocol divides sensor nodes

into multiple groups. The aggregated value of each group

is sent to the BS. The BS then identifies the suspicious

groups based on the set of group aggregates. However,

the protocol cannot pinpoint the location of the attacking

node. Therefore the attacker may launch an attack by

repeatedly injecting false data (or giving an inconsistent

Message Authentication Code, MAC).

Vu [13] proposed threshold security for information

aggregation in sensor networks, under the assumption of

a single aggregator. A sensor node does not provide its

signature if aggregation data is not close to its reading

value. The BS discards aggregation data, if the number

of sensors’ signatures is less than a given threshold. The

cost of establishing and maintaining cryptographic keys is

expensive. In particular, sensors require a cluster key

shared by all nodes in a cluster, which is used by the

cluster head to encrypt an aggregated value and

broadcast it to all nodes in the cluster.

Mlaih [8] proposed a secure hop-by-hop aggregation

and end-to-end authentication scheme. The ID list of the

sensors involved in a pair of aggregated values is

produced, which is used to regenerate a MAC to check

the integrity of the aggregated values. Using the ID list,

this scheme may identify the attacker. However the ID

list is concatenated to the aggregation messages and

therefore increases the communication overhead.

Moreover, an aggregator who is closer to the BS will

have to send longer packets (due to the longer ID list)

무선 센서 네트워크에서 Compromised Aggregator에 대응을 위한 모니터링 기반 시큐어 데이터 병합 프로토콜 305

and therefore suffers a higher communication overhead.

Da Silva [5] proposed a decentralized intrusion

detection scheme. In this scheme, monitor nodes issue an

alert when the number of occurrences of abnormal

behavior is greater than a threshold value, which is

computed from all network failures observed by monitors.

This scheme is lightweight in that it does not rely on

expensive cryptographic techniques. However, this scheme

does not focus on securing data aggregation and has

other limitations including the following: 1) it needs

special monitoring nodes, 2) no security mechanism is

provided to protect monitoring nodes themselves, and 3)

it cannot pinpoint the attacker. In contrast, our proposed

protocol can handle all these problems.

Boonsongsrikul [1] proposed securing data aggregation

by identifying the location of false data injection attacks.

This scheme is divided into three phases: 1) the query

dissemination phase, where the base station initiate the

aggregation; 2) the aggregation phase, where all nodes

perform the aggregation; and 3) the attestation phase,

where suspecting nodes send verification messages to the

BS to find suspicious nodes and verify them. However,

there are limitations. First, external sensor nodes are only

dedicated for monitoring the data sensing nodes and

cannot participate in aggregation data because they are

left unmonitored. Second, the scheme does not deal with

a compromised node which is able to drop an aggregation

message. This motivates us to develop our protocol.

3. Requirements of the Proposed Protocol

3.1 Physical phenomena and cryptographic requirements

We assume that the sensor nodes are responsible for

sampling physical phenomena such as temperature and

humidity. Sensor nodes have overlapping sensing ranges.

The BS shares a unique key with each node and also

knows the pairwise key shared between a parent and a

child. Unique keys between a node and the BS are

pre-installed before the network is deployed. In

exchanging a pairwise key between a parent and child,

we may use a Needham-Shroeder style key exchange.

The BS broadcasts messages to all nodes using μTESLA

[9] for the security mechanism.

3.2 Requirements of the aggregation tree

(1) External nodes and the aggregation graph

One of the two main ideas of our detection strategy is

monitoring by children. That is, the activities of a node

are monitored by its children nodes. However, in this

strategy the external nodes themselves are left

unmonitored and therefore should not be allowed to

provide data during an aggregation session (since they

can freely lie). This is a serious problem, because the

number of external nodes (who do not contribute to

aggregation except by monitoring their parents’ activity)

may be larger than the number of internal nodes. Thus,

when we build the aggregation tree we minimize the

number of external nodes by allowing them to monitor

each other. Therefore the aggregation tree can be

represented as a graph. We will explain this in Section

4.1 in the details.

(2) Minimum number of children per node

To ensure monitoring by children is effective, a node

needs to have a sufficient number of children (who can

snoop on the messages sent by the node). The minimum

number of children is determined a priori, depending on

the desired level of accuracy in detecting falsely injected

data (since the BS uses a statistical technique for

detection in [1], [11] and [14]).

4. Proposed protocol

The proposed protocol consists of the following phases.

1. Tree construction phase

2. Tree post-processing phase

3. Query dissemination phase

4. Aggregation phase

5. Attestation phase

6. Testification phase

Aggregation tree construction consists of phases 1 –

2. Secure data aggregation consists of phases 3 – 6. In

phase 5, nodes who suspect an injection of false data

send verification messages to the BS. In phase 6, nodes

who did not receive aggregation messages from their

children send a report to the BS in order to deal with

dropping data attacks. The message formats for these

phases are described in <Table 3 and 4>.

4.1 Tree construction phase

In the tree construction phase, we build the aggregation

tree that is suitable for our protocol. Basically, we ensure

that each node has a minimum number of children. We

propose two algorithms to build such a tree, as described

in <Table 1 and 2>. The first algorithm produces a

shortest-path spanning tree using breadth-first search as

in [15], where the degree of an internal node is equal to

306 정보처리학회논문지C 제18-C권 제5호(2011. 10)

(Fig.1) Classification of external contributing nodes (white)

and external non-contributing nodes (gray)

1) In the flooding stage,

a) The BS broadcasts the discovery message.

b) Each node receiving the flooding message records it

in the parent list. The node rebroadcasts it, if it

received the flooding message for the first time.

2) After flooding, each node

a) Picks a candidate parent from its parent list and

requests childship to the candidate.

b) Picks its children from the received requests by

choosing t children (where t is the minimum number
of children), and acknowledges parentship to the

chosen children.

If the node receives less than t requests, it will be an

external node.

3) To reduce orphans (nodes who do not have parents)

a) Each orphan broadcasts an adopt-me message.

b) Each internal node that received an adopt-me

message replies by sending an adoption message to

the orphan.

c) The orphan chooses its parent from the adoption

messages and acknowledges the parent.

<Table 1> Building the aggregation tree algorithm

1) Each orphan broadcasts an adopt-orphan message.

2) Each external node broadcasts an adopt-external

message.

3) If an external node receives more than t such
messages (where t is the minimum number of

children) then it will be an external contributing node.

a) It picks t nodes and replies by sending an adoption
message to them (chooses orphans first and then

considers external nodes).

b) Each external node who receives an adoption

messages marks the senders as its secondary

parents (note that an external node sends an

aggregation message only to its primary parent, not

to its secondary parents).

4) Otherwise it will be an external non-contributing node.

<Table 2> Reducing the number of external nodes algorithm

or greater than the minimum number of children (Section

5.1 later illustrates this algorithm in more detail).

Subsequently, the second algorithm reshapes the tree to

allow multiple parents for an external node (therefore the

tree is represented as a graph). This maximizes the

number of nodes being monitored. Those nodes will be

eligible to provide data during an aggregation session.

After this algorithm, each node will be one of the three

types below (refer to Fig. 1).

• Internal node (black node)

• External contributing nodes (white nodes)

• External non-contributing nodes (gray nodes)

An external node who can find a minimum number of

children will be an external contributing node. An

external contributing node has 1) a primary parent, whom

it monitors and sends its reading value to, and 2) a

number of secondary parents whom it monitors but does

not send its reading value to. Note that an external

contributing node himself becomes a secondary parent of

its siblings.

An external node who cannot find a minimum number

of children will be an external non-contributing node.

Such a node only monitors its parent(s) but does not

provide data during an aggregation session.

In (Fig. 1), external nodes whose in-degree is equal to

or greater than three are contributing nodes (white

nodes). The solid lines denote the primary parent-children

relationship, and dotted lines denote secondary

parent-children relationship.

Note that a memory overhead to build an aggregation

tree is equal to the number of IDs of neighboring nodes

which rebroadcast the BS’s flooding message.

4.2 Tree post-processing phase

After building the aggregation tree (actually a graph,

but we will henceforth refer to it as a tree for

simplicity), each node sends a report to the BS. The

report contains the following information.

∙The node’s primary parent and the list of secondary

parents

The purpose of this information is to enable the BS to

find out the topology of the aggregation tree in order

to verify the integrity of the tree.

∙The type of node (internal, external contributing or

external non-contributing)

The purpose of this information is to let the (primary)

parent of this node snoop on this message in order to

discover whether or not this node is allowed to provide

data during aggregation.

If node A falsely claims to be an internal or external

contributing node, the BS can detect that node A is a liar

because the number of reports (confirming that node A is

무선 센서 네트워크에서 Compromised Aggregator에 대응을 위한 모니터링 기반 시큐어 데이터 병합 프로토콜 307

(Fig. 2) The attestation tree. The dashed edges are the

attestation tree and the double circle is an attack node.

Black, gray and light gray nodes denote high, moderate, and

low probability of detecting abnormal values, respectively

Messages Format

query <sid,type>

aggregate <op,id,pid,agg,AMAC,BMAC>

attest <op,id,pid,R,agg,pagg,CMAC,pBMAC>

absence <op,id,cid,DMAC>

testify <op,id,pid,gpid,pagg,pBMAC>

<Table 4> Message formats in an aggregation session

Notation Meaning

type
1-bit value specifying the types of aggregation

functions (sum or mean).

op
2-bit value specifying the message type

(aggregate, attest, absence or testify).

sid Unique session identifier.

id Node identifier.

pid Identifier of a parent node.

gpid Identifier of a grandparent node.

cid
Identifier of node who did not send an

aggregate.

R A reading or raw data value of a node.

agg
An aggregated value combined by a reading of a

node and readings of children.

pagg
An aggregated value of a parent which a child

snoops on.

Ki,j Shared key between node i and j.

AMAC
MAC of data A calculated with key Kid,pid where
A is a concatenation of id and sid.

BMAC
MAC of data B calculated with key Kid,BS where
B is a concatenation of id, pid, agg and sid.

pBMAC BMAC of a parent which a child snoops on.

CMAC
MAC of data C calculated with key Kid,BS where
C is a concatenation of id, pid, R, agg, pagg
and sid.

DMAC
MAC of data D calculated with key Kid,BS where
D is the concatenation of id, cid and sid.

<Table 3> Message fields

a parent) is less than a given threshold. The BS lets the

parent of node A know that node A is a liar. Then node

A is not allowed to provide data.

4.3 Query dissemination phase

Data aggregation may be regularly requested (this

depends on applications). The BS starts data aggregation

by flooding a query message. We do not provide an

authenticated broadcast mechanism but instead assume a

technique of μTESLA [9].

4.4 Aggregation phase

Different from query dissemination, data aggregation

starts from external nodes towards the BS. Since an

external contributing node does not need to do

aggregation, so it sends its reading value to its primary

parent. The primary parent first verifies the AMAC

(MAC type A, explained in Table 3). If the AMAC is

legitimate, then the primary parent aggregate its own

reading value and a child’s reading value; otherwise it

discards the message. External non-contributing nodes

sense data values but do not send aggregation messages.

Their roles are to monitor their parents and participate in

the attestation phase. If an external non-contributing node

sends an aggregation message to its parent, the message

will be discarded because its parent knows the types of

their children (after post-processing the aggregation tree).

If there are no suspicious values after a primary parent

and all secondary parents send a data value, a node goes

into the sleep mode. The node has done monitoring.

4.5 Attestation phase

During the aggregation phase, each child also overhears

the aggregation message sent by its parent (to the grand

parent). In detecting an abnormal value, we can consider

two cases.

1. If the difference between the readings of a child and

that of its secondary parent is greater than a given

threshold then the secondary parent is considered

suspicious. Since a child is close to its secondary parent,

so their readings should be similar.

2. If an aggregated value of a primary parent is

abruptly changed from aggregated values in the history

then the primary parent is considered suspicious. We

assume that aggregated values are initially trustworthy

(before performing passive attacks). A node compares an

aggregated value with the aggregated values given by its

primary parent in the history.

Note that we do not consider detecting the case where

a compromised node tries to forge an aggregated value

308 정보처리학회논문지C 제18-C권 제5호(2011. 10)

1) Before starting the aggregation phase, each internal node

sets a timeout according to the longest aggregation time.

2) After the time has expired, each internal node sends an

absence message to the BS, containing the IDs of any

of their children who did not send aggregation messages

(the suspicious nodes).

3) From these messages, the BS builds a testification tree.

4) The BS finds the suspicious node claimed by the leaf

node of the testification tree, and asks the children of

that suspicious node to send the aggregation message of

the suspicious node (which they snooped during the

aggregation phase).

5) If the children supply the valid aggregation message of

the suspicious node, then the parent of the suspicious

node is the attacker (case 2 in Fig. 6). Otherwise the

suspicious node is the attacker (case 1).

<Table 5> Finding dropping data attack algorithm

being a normal data range because it has a little effect

and hard to detect. In contrast, we are interested in

detecting a compromised node that is trying to forge

aggregation data of their non-compromised children.

When a node finds an abnormal value, it sends an

alert message to the BS. This alert message is called an

attestation message. The attestation message is not sent

through the aggregation tree. Instead, the sender picks

another node in its parent list to send its attestation

message. This is because it may not trust its primary

parent to reliably forward its attestation message. Such a

routing is possible for many existing routing algorithms.

Note that there may be many shortest paths between a

node and the BS if the network is sufficiently dense [12].

In order for an attack to be effective, the data value

injected by the adversary usually needs to be quite

different from the normal reading value. However, in such

a case, children of the adversary would send attestation

messages to the BS. All the ancestor nodes on the path

from the adversary to the BS are affected by the injected

value to a diminishing degree, so their siblings would

detect an anomaly and send attestation messages with

decreasing probability. The BS then uses the attestation

messages to identify a subtree consisting of alerting

nodes. We call it an attestation tree, which is used to

locate the adversary. (Fig. 2) illustrates such an

attestation tree.

4.6 Testification phase

If a node sends a normal value with an invalid AMAC

in an aggregation message, its parent will discard its

message. However, its children who snoop on the

aggregation message would falsely assume that it

successfully sent its aggregation message.

In effect, a (compromised) node can drop a message.

To deal with this type of attack, nodes who did not

receive an aggregation message from one or more of its

children (and are thereby unable to complete the

aggregation process) participate in the testification phase

by sending absence messages to the BS. Then the BS

builds the testification tree which is a subtree consisting

of the nodes who sent absence messages as illustrated in

(Fig. 5).

For this we assume that each node knows the longest

time required to complete an aggregation session, which

may be inferred from the number of nodes, average node

density, collision rate, etc. [7]. The algorithm for this

phase is shown in <Table 5>.

5. Detecting the Injected False Aggregated Value

In this section, we discuss a scenario in detecting a

false data injection attacker. When the BS receives

attestation messages, it computes CMACs (MAC type C)

to verify authentication of reporting nodes. If CMACs

computed by the BS and CMACs sent by reporting nodes

match, the BS uses id and pid in attestation messages to

build an attestation tree. The parent of leaf nodes of the

attestation tree is the most suspicious. If this parent has

either an inconsistent value which its children snooped or

an outlier aggregate, it will be a compromised node. The

BS carries out two steps: 1) checking consistency and 2)

finding an outlier.

5.1 Checking consistency

The BS retrieves a reading of a parent of leaf nodes

in the attestation tree. If the parent gives inconsistent

data value between the aggregation phase and the

attestation phase then it is the attacker. As illustrated in

(Fig. 3), we assume using a sum function for data

aggregation. Node S is a parent of nodes r0, r1, r2, r3

and r5. Node r2 is an internal node. Nodes r1 and r3 are

an external contributing node. Nodes r0 and r5 are an

external non-contributing node. In the aggregation

message, node r2 sends (aggregated value) 14 while node

r1 and r3 send (reading) 3 and 5 respectively. Node S

sends (aggregated value) 38 to its parent. If node r1, r2

and r3 consider that node S sends an abnormal value

then they report the attestation message to the BS. Since

an aggregated value of node S exists in the attestation

messages of children, the BS can retrieve a reading value

of node S. The reading of node S (Rs) is 38-3-14-5 = 16.

Note that the aggregated value is not included readings

무선 센서 네트워크에서 Compromised Aggregator에 대응을 위한 모니터링 기반 시큐어 데이터 병합 프로토콜 309

(Fig. 3) A suspicious node and leaf nodes in the attestation tree. The solid edges representing data values sent to a parent.

The dashed lines are monitoring by external non-contributing nodes. The dotted edges representing data values sent to the BS

of external non-contributing nodes r0 and r5. If node S

does not give Rs = 16 to the BS, then node S is the

attacker. (Since node S possibly gives a normal range of

Rs but an abnormal aggregate of its parent, pagg, in its

attestation message in order to claim that it does not

inject false data but its parent does.)

5.2 Finding the outlier

If node S gives its reading, Rs = 16, then the BS goes

into a next step in computing the outlier. If value 16 is

the outlier then node S is the attacker. Otherwise, if

value 16 is not the outlier, then there is a false positive.

The outlier is normally quite different from the other

values. Criteria in considering the outlier depend on the

allowable value and applications. To compute the outlier,

the BS uses a set of readings in the attestation

messages. As illustrated in (Fig. 3), the partial formats of

the attestation messages given by node r0, r1, r2, r3, r4,

r5 and S are <R=2, agg=2>, <R=3, agg=3>, <R=4,

agg=14>, <R=5, agg=5>, <R=6, agg=6> and <R=16,

agg=38> respectively. The agg denotes an aggregated

value combined by a node’s reading and children’s

readings. Assume a reading value of node r2 is 4 and

after combining the reading and children’s reading, the

aggregated value is 14. The completed format of the

attestation message is showed in <Table 4>. Therefore

the set of the readings given by the leaf nodes and their

parent in the attestation tree is {2,3,4,5,6,16}. In computing

whether or not a suspicious value, Sv, is the outlier the

BS computes the sample statistic,

where and s are the mean and standard deviation of

all readings in the set. If the sample statistic, Ss, falls in

the rejection range defined by the critical values then the

suspicious value, Sv is the outlier. (In our example, Sv =

16) However, we do not propose an algorithm in finding

the outlier. We adopt an algorithm [14] in finding the

outlier. The other example of computing an outlier is

showed in [1].

Note that when a compromised node is found, the BS

can broadcast the ID of the offending node so that it will

be ignored by other nodes in the next aggregation

session. Alternatively, we revoke compromised keys using

techniques in [3], [4], and [16]. Therefore, the attacker

cannot inject false data after revoking compromised keys.

6. Security in the Aggregation Phase

In this section we discuss various attack scenarios that

an adversary attempts to inject false id, data, MAC, etc.

during the aggregation phase and how our protocol can

cope with them.

As illustrated in (Fig. 4), a compromised node A

fabricates an aggregation message (containing an abnormal

value) from one of its children to himself. Note that such

a message is valid, because the attacker knows the

AMACs of its children. Then, it may or may not choose

to send an abnormal aggregation message to its parent.

Case a. If node A sends a normal value to its parent,

then it is simply framing one of its children but there is

still no false data injection. That is, it aims to induce the

children of the victim to send attestation messages and

therefore drain the energy of the children.

Case b. If node A sends an abnormal value to its

parent, then it is trying to inject a false data while

framing one of its children. In this case, children r1, r2

and r3 of node v send an attestation message to the BS.

310 정보처리학회논문지C 제18-C권 제5호(2011. 10)

(Fig. 4) Examples of sending fake aggregation messages.

Node A is the attacker and v is the victim. The dashed edge

is fake aggregation message. The dotted edges are

attestation messages. BMAC’ is invalid

The BS will then consider the victim as the attacker if

the victim is on the lowest level of the attestation tree.

In other words, node A aims to inject a false data while

framing the victim. However, the BS can distinguish

attestation messages that are generated by a fake

aggregation message, because such attestation messages

cannot contain the valid BMAC (MAC type B) of the

victim (pBMAC, BMAC of a parent) where a BMAC is a

Message Authentication Code between a node and the

BS.

In Case b, the attacker is detected because it is on the

lowest level of the attestation tree (this is because

attestation messages from the children of the victim are

found to be invalid).

In Case a, the BS only knows 1) the children of the

framed node, and 2) the fact that the attacker is within

the transmission range of the victim’s children. In other

words, the BS cannot locate the attacker. However this

attack that drains the energy of child nodes is out of the

scope in this paper. A viable alternative to avoid this

type of attack is to introduce a group key that is shared

by a parent and its children (as many other schemes

have done). However, this would substantially increase

the complexity of the protocol.

7. Security in the Attestation Phase

In this section we discuss various attack scenarios that

an adversary may attempt during the attestation phase,

and how our proposed protocol can cope with them.

7.1 False information in the attestation message

An attacker might include an abnormal data value in

the aggregation message but include a normal data value

in the attestation message in order to fool the BS.

However, an attestation message contains the data value

of its parent (pagg) as well as its own data value (agg)

<Table 4>. If the attacker lies, the many attestation

messages of its children will prove him as a liar

(monitoring by children and decision by majority).

Also, an attacker might include a false pid and an

abnormal value in data in order to frame an innocent

node. However, the BS will not regard the framed node

as an attacker unless a minimum number of messages

had implicated him (decision by majority).

7.2 Not sending an attestation message

An attacker might choose not to send the attestation

message because it cannot successfully report false

information during the attestation phase. However, the BS

will still discover its information, because the attestation

messages sent by its children include this <Table 4>.

8. Security in the Testification Phase

In this section we discuss how an adversary attempts

to drop a message and how our algorithm detects such

attempts.

8.1 Not reporting a missing aggregation value

The attacker who did not send its reading value may

not report to the BS, for the obvious reason that it wants

to avoid detection. That is, the attacker does not send an

absence message (Case 1 in Fig. 5) including DMAC

(MAC type D). The resulting testification tree would

actually be a path unless there are multiple attackers.

According to the testification algorithm (in Table 5),

the BS builds a testification tree, which consists of nodes

p and gp in Case 1. Subsequently, the BS chases down

the testification tree, finds the last suspicious node (it

would be node a in Case 1 as indicated by p), and asks

the children of the suspicious node to send the

aggregation message of the suspicious node (which they

snooped during the aggregation phase).

The BS then can verify the AMAC and BMAC of the

aggregation message.

In this case, the children either did not observe an

aggregation message sent by the suspicious node, or have

snooped on aggregation messages that contain an invalid

MAC. In either case, the BS knows that the attacker is

dropping a message. In other words, the children testify

against the attacker.

무선 센서 네트워크에서 Compromised Aggregator에 대응을 위한 모니터링 기반 시큐어 데이터 병합 프로토콜 311

(Fig. 5) Examples of the testification process. Case 1 shows

testification of this dropping data attack. Case 2 shows

testification of framing a child. 1), 2) and 3) represent an

absence message, a query of the BS and a testification

message respectively

8.2 Framing a child

The attacker may choose to send an absence message,

this time framing one or more of its children (Case 2 in

Fig. 5). The resulting testification tree contains nodes a,

p and gp. Again, the children of the last suspicious node

(the framed node v) are asked to send the aggregation

message of v. Those messages contain a valid MAC, so

the BS knows that the parent of v is lying and hence

the real attacker. In other words, the children testify for

node v.

9. Communication Overhead

In this section we analyze the communication overhead

during 1) construction of the tree and 2) an aggregation

session. We estimate the communication overhead as the

number of hops traveled by all messages.

In summary, the communication overhead for building

an aggregation tree takes O(), but this may not be

a serious concern, because it is not necessary to build the

aggregation tree often.

More importantly, the communication overhead of the

entire aggregation session (including aggregation,

attestation and testification phase) remains O(n).

We assume that the number of hops (or the path

length) between any two nodes is, where n is the total

number of sensor nodes uniformly deployed in two

dimensional space [2].

∙Overhead in the tree construction phase

In the aggregation tree algorithm, steps 1 b), 2 a), 2

b), 3 a), 3 b), and 3 c) each take O(n). In step 3 b) we

assume the number of neighbors is a constant.

In the aggregation graph algorithm, steps 1, 2, 3 a),

and 3 b) each take O(n). In step 3 a) we assume a

threshold value is constant. Therefore the overhead in the

tree construction phase is O(n).

∙Overhead in the tree post-processing phase

Since a distance from a node to the BS is O(),

therefore a communication overhead of information sent

by a node via intermediate nodes to the BS takes O

(). The information sent by a node denotes its node’s

type (illustrated in Fig. 1) and the list of its primary and

secondary parents. Since there are n sensor nodes in the

network, therefore total communication cost in sending

the information is O().

∙Overhead in the query dissemination and aggregation

phase

A query dissemination message can be flooded to all

nodes with O(n) number of hops. The aggregation phase

requires O(n) number of hops because a node sends an

aggregation message.

∙Overhead in the attestation phase

The number of messages generated in the attestation

phase depends on the number of attackers and their

location. In this section we consider a simple case where

there is only one attacker.

As we mentioned in Section 4.5, if the abnormality of

a data value is high enough, then all the nodes (and their

siblings) on the path from the abnormal node to the BS

would send attestation messages. The total number of

hops traveled by all the attestation messages can be

estimated by equation (1), where d is the maximum node

degree (the minimum number of children per node) and pl

is the path length (the level of the attestation tree). Each

attestation message is unicast and takes the shortest path

to the BS, as explained in Section 4.5.

Costattest = d × (1 + 2 + 3 + … + pl)

= d ×

= O(pl2)

= O(n) (1)

The attestation phase thus takes O(n) number of hops.

∙Overhead in the testification phase

In the testification algorithm, step 2) takes 1+2+ ... + pl

= O(n), where pl is the path length of the testification

tree. Step 4) takes d × = O() where d is the

312 정보처리학회논문지C 제18-C권 제5호(2011. 10)

(Fig. 6) The final aggregation tree (graph). The dotted lines

among external nodes denote secondary parent-children

relationships. An attestation tree is shown as thick edges.

The dashed edges show an example of a path, along which

an attestation message is routed to the BS

node degree (the number of leaf nodes of the suspicious

node). The overall cost of the testification phase is thus

O(n).

10. Simulation Results and Comparison with

Existing Work

In this section we present our simulation results that

provide the following information.

1. An example of an aggregation tree and an

attestation tree

2. The properties of the aggregation tree

3. The communication overhead in the attestation phase

4. The energy consumption

5. Comparison with related work

Below are our assumptions for the simulation in

Section 10.1, 10.2 and 10.3.

• The BS is at coordinate (0,0) while sensor nodes are

randomly deployed in a square area (1,000 - 18,000

nodes)

• The minimum number of children is 3, 5, 7, 9 and 11

• The adversary node is far from the BS, in order to

compute the worst case communication overhead

• Each communication overhead is averaged based on

100 experiments

10.1 An Example of an aggregation tree and an attestation

tree

(Fig. 6) shows the result of the aggregation tree after

the aggregation tree algorithm <Table 1> and the

aggregation graph algorithm <Table 2> are applied. After

stages 1) and 2) of the aggregation tree algorithm, the

tree is basically the same as a shortest-path spanning

tree such as ENCAST [15], except nodes who cannot find

a minimum number of children remain as external nodes.

As a result, nodes whose level is lower than such

external nodes are unconnected (orphans).

However, after stage 3) of the aggregation tree

algorithm, practically all the orphans are adopted by some

internal nodes, unless they are not in the transmission

range of any of the internal nodes. After the aggregation

graph algorithm, the aggregation tree is augmented with

more edges among external nodes (shown in dotted line).

However, the two nodes, connected by such an edge, do

not exchange data (such a node only monitors the other

node). Therefore, although the aggregation graph appears

to be dense, the communication overhead does not

increase.

The thick edges show an attestation tree. In identifying

a compromised node, the most suspicious node is a

parent of leaf nodes of the attestation tree. The dashed

line shows an example of an actual shortest path which a

reporting node sends the attestation message to the BS.

As explained in Section 4.4, a reporting node who

suspects its primary parent chooses an alternate shortest

path to the BS by sending the message to one of the

nodes in its parent list. If leaf nodes’ parent in the

attestation tree has either an inconsistent value, which its

children snooped, or an outlier aggregate, then this parent

is a compromised aggregator.

10.2 Properties of the aggregation tree

(1) Connectivity of the aggregation tree

According to the aggregation tree algorithm (Section

4.1), nodes who cannot find the minimum number of

children will be external nodes. As a result, nodes whose

level is lower than such nodes are unconnected (orphans).

In general, the connectivity is higher if the minimum

number of children is less than the average number of

neighbors. In our experiment, orphans are practically

nonexistent if the average number of neighbors is twice

as large as the minimum number of children (or more).

For example, when the minimum number of children is 11

we need more than 20 neighbors in order to avoid

orphans.

무선 센서 네트워크에서 Compromised Aggregator에 대응을 위한 모니터링 기반 시큐어 데이터 병합 프로토콜 313

(Fig. 7) Percentage of monitoring-only nodes

(Fig. 8) Communication overhead when the minimum number

of children is 11. Note that we excluded the case of 20

neighbors in order to avoid unconnected nodes

(2) Percentage of non-aggregating nodes

A node is not allowed to provide data during

aggregation if it cannot find a minimum number of

children (who monitor him), because we cannot believe

its data. In general, it is more likely to have a minimum

number of children (and hence will be a data-providing

node) if it has more neighbors or a lower number of

monitoring nodes (children) is required.

(Fig. 7) shows the result of our simulation. The result

shows that with the neighbor size of 40, the percentage of

non-aggregating nodes is well below 10 for all of the

node degrees (minimum number of children) we tested.

For a node degree such as 5 or less, even 20 neighbors

suffice. This result clearly shows that the number of

non-aggregating nodes is negligible. For all the cases of

the minimum number of children, our simulation shows

that 95% of total nodes can participate in the data

transmission when the number of neighboring nodes is 50.

10.3 Communication overhead in the attestation phase

The results of our simulation (see Fig. 8) show that

the communication overhead is linear with respect to the

number of nodes, as analyzed in Section 4.4. Generally

speaking, with a given number of nodes, the stronger the

radio range (hence the higher the number of neighbors),

the lower the number of hops it takes to send a message

to the BS. Our simulation result confirms this

expectation.

10.4 Energy consumption

We divide this section into two sections. First, we

measure energy overhead when a false data injection

attack occurs. Second, we compare wasted energy

between our work and related work [14].

To measure energy consumption, we use ns-2

simulator [16] and energy models [17]. The energy

required in sending a message of a node is s. (δ+θ ×dq),

where s is the message size, δ = 50 nJ/b is a

distance-independent term, θ = 100 pJ/b/m is the

coefficient for a distance-dependent term, q = 2 is the

exponent for the distance-dependent term, and d = 15 m

is the transmission distance. The energy required in

receiving a message of a node is s×γ, where γ = 50 nJ/b

is a coefficient independent of transmission distance.

The initial energy budget at each sensor node is set at

50 J. Let op, id, agg and MAC be 2, 16, 32 and 64 bits.

Therefore, aggregation and attestation data of our work

are 194 and 226 bits. Aggregation and attestation data of

work [14] are 152 and 136 bits, respectively. We simulate

over ten topologies where 100 sensor nodes are randomly

deployed in an area of 50 × 50m2 and the locations of a

compromised node are variously changed in order to find

an average energy in detecting the attack.

∙Energy overhead

We measure the energy overhead when there is a false

data injection attack. Average energy consumption of all

sensor nodes that send aggregation data is 438mJ and

average energy consumption of sensor nodes that send

attestation messages to the BS is 102mJ. Therefore, an

average energy overhead is 23.3% increase when there is

a false data injection attack.

∙Wasted energy between our work and related work [14]

In this section, we simulate and compare wasted

energy between our work and work [14] when a single

compromised node keeps injecting false data in a

network.

Let β denote an accumulation of wasted energy.

314 정보처리학회논문지C 제18-C권 제5호(2011. 10)

The number of false data

injection attacks

β (mJ)

Our work Work [14]

1 540.6 293.8

2 540.6 587.6

3 540.6 881.4

k (k > 3) 540.6 293.8×k

<Table 6> Accumulation of wasted energy

Approaches
Security

mechanism
Limitation(s)

Communication overhead
The percentage of

the avg. num. of

contributing nodes

per total nodes
Building

a tree

Detecting

an attack

Madden[7] No use No security N/A O(n) 100

Przydated[10]
Hash tree

MAC
Internal nodes do not sense data N/A O(l2), l≤ n 50

Yang[14]
Encryption

MAC
Cannot identify attacker N/A O(n) 100

Boonsongsrikul[1] MAC
External nodes do not participate in

aggregated values
N/A O(n) Less than 50

Vu[10]
Encryption

MAC

Cannot identify attacker and needs

cluster keys
N/A O(n) 100

Mlaih[8]
Encryption

MAC
Long aggregation messages N/A O(n ln(n)) 100

Da Silva[5] MAC No security for monitoring nodes N/A O(n2) 100

Our work MAC Require our specific aggregation tree O(n) 95

<Table 7> Comparison of security aspects, communication overhead and the number of contributing nodes

Wasted energy consists of 1) energy of sensor nodes

which send false data, 2) energy of sensor nodes which

send attestation messages to the BS and 3) energy of

sensor nodes which forward flooding messages of the BS

to announce the ID of a compromised node.

Except work [14], we cannot find information about the

packet size of aggregation data. Therefore, in this section

we only compare our work and work [14].

Since the packet size of aggregation and attestation

data of our work are longer than that of work [14],

energy consumption of our work is 46% higher during

the first false data injection attack. However, after a

compromised node is found, it will be ignored by other

nodes and cannot participate in data transmission.

Therefore, sensor nodes do not waste their energy to

send false data in the next aggregation session. Wasted

energy will be 540.6mJ as illustrated in <Table 6>.

Wasted Energy of work [14] will increase as a linear

function because their sensor nodes waste their energy to

send false data. Energy consumption of work [14] is

higher than that of our work at the 2nd round of false

data injection where a false data injection is occurring

every aggregation session.

10.5 Comparison with existing work

<Table 7> compares the communication overhead,

limitations and the percentage of the average number of

contributing nodes per total nodes for each scheme. The

communication overhead of the proposed scheme in an

aggregation session is the same as or better than the

overhead of other schemes. But unlike other schemes, our

work can identify the adversary node as well. While

many existing schemes assume centralized aggregation,

our scheme assumes hierarchical aggregation and

therefore scales well with a large number of sensor

nodes. In [8], [13] and [14] their aggregation message

requires encryption and decryption between a sender and

a receiver. This increases a computation cost of sensors.

Unlike their schemes, our scheme avoids using encryption

and decryption where an aggregation message is only

plaintext. Our solution is more simple and lightweight

than them because we use merely a minimal

cryptographic technique that is a MAC. In terms of a

computation cost occurred by encryption, our current

solution is as efficient as the solution [5] and more

efficient than the solutions [8], [13] and [14]. In terms of

contributing nodes that can participate in an aggregated

value, our proposed protocol has more the number of

contributing nodes than that of the solutions [1] and [10].

(Fig. 7) shows that even though only 95% of total

무선 센서 네트워크에서 Compromised Aggregator에 대응을 위한 모니터링 기반 시큐어 데이터 병합 프로토콜 315

number of nodes participates in data transmission, our

proposed protocol detects the attacks and also identifies

the location of the attacker.

11. Conclusion

We proposed a protocol for detecting false data

injection that uses minimal cryptographic techniques. Our

proposed protocol can also find the attacker, whereas to

our best knowledge no other schemes can. Our proposed

scheme can also handle other kinds of attacks during

data aggregation, including framing other nodes and

dropping an aggregation message.

In our protocol, the communication overhead of the

entire aggregation session (aggregation, attestation, and

testification phase) remains O(n), which is better than or

equal to other work. However, the communication

overhead of building a tree is. Unfortunately we cannot

compare the communication overhead in construction of

an aggregation tree of our protocol because the related

work does not provide a communication overhead in

building the aggregation tree or assumes that the

aggregation tree already exists.

There is a limitation in the proposed protocol. We can

currently pinpoint the attacker for all of the attack types

we analyzed, except the framing attack (Section 6 Case

a), which leaves the possibility of a attack that can drain

the battery of the victim’s children. We plan to study this

issue in our future work.

References

[1] A. Boonsongsrikul and et al., “Securing Data Aggregation

against False Data Injection attacks in Wireless Sensor

Networks,” ICACT 2010, pp.29-34, 2010.

[2] H. Chan and A. Perrig, “PIKE: Peer Intermediaries for Key

Establishment in Sensor Network,” IEEE INFOCOM 2005,

pp.524-535, 2005.

[3] H. Chan, A. Perrig, and D. Song, “Random key predistribution

schemes for sensor networks,” Proc. of IEEE Symposium on

Security and Privacy, May, 2003.

[4] H. Chan, V. Gligor, A. Perrig, and G. Muralidharan, “On the

distribution and revocation of cryptographic keys in sensor

networks,” IEEE Transactions on Dependable and Secure

Computing, Vol.2, No.3, pp.233-247, July-Sept., 2005.

[5] Da Silva and et al., “Decentralized Intrusion Detection in

Wireless Sensor Networks,” Q2SWinet ’05, pp.16-23, 2005.

[6] W. R. Heinzelman and et al., “Energy efficient communication

protocol for wireless microsensor networks,” Proc. of the

33rd Hawaii Int. Conf. on System Sciences, pp.3005-3014,

2000.

[7] S. Madden and et al., “TAG: aTiny AGgregation service for

ad-hoc sensor networks,” OSDI’02, 2002, pp.1-16, 2002.

[8] E. Mlaih and et al., “Secure Hop-by-Hop Aggregation of

End-to-End Concealed Data in Wireless Sensor Networks,”

IEEE INFOCOM, pp.1-6, 2008.

[9] A. Perrig, R. and et al., “SPINS: security protocols for sensor

networks,” ACM SIGMOBILE, pp.189-199, 2001.

[10] B. Przydatek and et al., “SIA: Secure information Aggregation

in Sensor Networks,” SenSys’ 03, pp.255-265, 2003.

[11] J. R. Taylor, An Introduction to Error Analysis. 2nd edition.

Sausolito, California: University Science Books. 1997.

[12] The Network Simulator—ns-2 [Online], Available:

http://www.isi.edu/nsnam/ns/

[13] H. Vu and et al., “THIS: THreshold security for Information

aggregation in Sensor networks,” ITNG’07, pp.89-95, 2007.

[14] Y. Yang and et al, “SDAP: A Secure Hop-by-Hop Data

Aggregation Protocol for Sensor Networks,” MobiHoc’06, pp.

356-367, 2006.

[15] S. Zou and et al., “ENCAST: EnergyCritical Node Aware

Spanning Tree for Sensor Networks,” CNSR, pp.249-254,

2005.

[16] L. Eschenauer and V. D. Gligor, “A key-management scheme

for distributed sensor networks,” in CCS ’02: Proc. of the

9th ACM conference on Computer and Communications

Security, pp.41-47, 2002.

Boonsongsrikul, Anuparp

e-mail : anuparp@ajou.ac.kr

1998년 Mahanakorn 기술대학교

통신공학과(공학사)

2002년 Kasetsart 전자공학과(석사)

2007년∼현 재 아주대학교

정보통신공학과 박사과정

관심분야 : 센서 네트워크, 에드혹 네트워크, VANET,

IC 디자인 등

이 경 석

e-mail : kyungsuk.lhee@gmail.com

1991년 고려대학교 서어서문학과(학사)

1993년 그리피스대학교

business computing학과(석사)

1996년 보스톤대학교 컴퓨터공학과(석사)

2005년 시라큐스대학교 컴퓨터공학과(박사)

2005년∼2010년 아주대학교 정보컴퓨터공학부 조교수

관심분야 : 컴퓨터보안, 네트워크보안 등

316 정보처리학회논문지C 제18-C권 제5호(2011. 10)

박 승 규

e-mail : sparky@ajou.ac.kr

1974년 서울대학교 용용수학과(공학사)

1976년 한국과학원(KAIST) 전산학과

(석사)

1982년 Institut National Polytechnique

de Grenoble 전산학과(박사)

1976년∼1977년 한국과학기술연구소(KIST) 연구원

1977년∼1978년 KIET (현ETRI) 연구원

1978년∼1982년 프랑스 그레노블 IMAG 연구원/학생

1982년∼1984년 KIET (현ETRI) 실장/선임연구원

1984년∼1985년 미국 IBM 왓슨연구소 연구원

1985년∼1992년 ETRI 연구위원/책임연구원

1992년∼현 재 아주대학교 정보통신대학 교수

관심분야 :임베디드 테스팅, 자가 컴퓨팅/치료 시스템,

차세대 컴퓨터 구조 등

