Fig. 1. The architecture of proposed algorithm. 그림 1. 제안된 알고리즘 구조도
Fig. 2. The Architecture of Faster R-CNN. 그림 2. Faster R-CNN 구조도
Fig. 3. Example of Labeling area for dataset image. 그림 3. 영상 데이터의 라벨링 영역 예
Fig. 4. Example of the frame sequences of test videos. 그림 4. 테스트 비디오의 연속 프레임 예
Fig. 5. The frame sequence result of the Faster R-CNN, (a) the result of true positive, (b) the result of false positive. 그림 5. Faster R-CNN의 연속 프레임 결과 (a) true positive 결과, (b) false positive 결과
Fig. 6. The result of adapted proposal algorithm using video files, (a) good result, (b) bad result. 그림 6. 제안된 알고리즘이 적용된 비디오 파일 실험 결과, (a) 좋은 검출 결과, (b) 나쁜 검출 결과
Table 1. Faster R-CNN results for video images (Frames). 표 1. Faster R-CNN video 테스트 결과
Table 2. Proposed algorithm results for video images (Frames). 표 2. 제안된 알고리즘을 적용한 video 테스트 결과
References
- C. Chen, "Rear Approaching Vehicle Detection with Microphone," Bachelor's Thesis, Halmstad University, 2013.
- V. K. Ananthanarayanan, "Audio Based Detection of Rear Approaching Vehicle on a Bicycle," Graduate School Thesis, Rutgers University, 2012.
- C. T. Chen and Y. S. Chen, "Real-time approaching vehicle detection in blind-spot area," 12th Internal IEEE Conference on intelligent Transportation Systems, 2009. DOI: 10.1109/ITSC.2009.5309876
- H. W. Kang, J. W. Baek, and Y. S. Jeong, "Real-Time Side-Rear Vehicle Detection Algorithm for Blind Spot Warning Systems," KIISE Transactions on Computing Practice, vol. 23, no. 7, pp. 408-416, 2018. DOI: 10.4271/2012-01-0293
- J. Dobahue, R. Girshick, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," IEEE Internal Conference on Computer Vision and Pattern Recognition, pp. 580-587, 2014.
- Ross Girshick, "Faster-RCNN," IEEE International Conference on Computer Vision, pp. 1440-1448, 2015. DOI: 10.1109/ICCV.2015.169
- S. Ren, K. He, R. Gisshick, and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 38, no. 6, pp. 1137-1149, 2017. DOI: 10.1109/TPAMI.2016.2577031
- F. Quanfu, B. Lisa, and S. Hohn, "A Closer Look at Faster R-CNN for Vehicle Detection," 2016 Intelligent Vehicle Symposium, pp. 124-129, 2016. DOI: 10.1109/IVS.2016.7535375
- S. C. Hsu, C. L. Huang, and C. H. Chuang, "Vehicle Detection using simplified Fast R-CNN," International Workshop on Advanced Image Technology, 2018. DOI: 10.1109/IWAIT.2018.8369767
- H. S. Kim and J. S. Park, "intensity-based efficient Video Quality Assessment for Variable bitrate Streaming," Korean Institute of Next Generation Computing, vol. 11, no. 5, pp. 63-71, 2015.