• Title/Summary/Keyword: Face-to-face Method

Search Result 3,236, Processing Time 0.027 seconds

A Method for Determining Face Recognition Suitability of Face Image (얼굴영상의 얼굴인식 적합성 판정 방법)

  • Lee, Seung Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.295-302
    • /
    • 2018
  • Face recognition (FR) has been widely used in various applications, such as smart surveillance systems, immigration control in airports, user authentication in smart devices, and so on. FR in well-controlled conditions has been extensively studied and is relatively mature. However, in unconstrained conditions, FR performance could degrade due to undesired characteristics of the input face image (such as irregular facial pose variations). To overcome this problem, this paper proposes a new method for determining if an input image is suitable for FR. In the proposed method, for an input face image, reconstruction error is computed by using a predefined set of reference face images. Then, suitability can be determined by comparing the reconstruction error with a threshold value. In order to reduce the effect of illumination changes on the determination of suitability, a preprocessing algorithm is applied to the input and reference face images before the reconstruction. Experimental results show that the proposed method is able to accurately discriminate non-frontal and/or incorrectly aligned face images from correctly aligned frontal face images. In addition, only 3 ms is required to process a face image of $64{\times}64$ pixels, which further demonstrates the efficiency of the proposed method.

Efficiency Improvement on Face Recognition using Gabor Tensor (가버 텐서를 이용한 얼굴인식 성능 개선)

  • Park, Kyung-Jun;Ko, Hyung-Hwa
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9C
    • /
    • pp.748-755
    • /
    • 2010
  • In this paper we propose an improved face recognition method using Gabor tensor. Gabor transform is known to be able to represent characteristic feature in face and reduced environmental influence. It may contribute to improve face recognition ratio. We attempted to combine three-dimensional tensor from Gabor transform with MPCA(Multilinear PCA) and LDA. MPCA with tensor which use various features is more effective than traditional one or two dimensional PCA. It is known to be robust to the change of face expression or light. Proposed method is simulated by MATALB9 using ORL and Yale face database. Test result shows that recognition ratio is improved maximum 9~27% compared with exisisting face recognition method.

Analysis characters of distortion of inclined mechanical face seal (경사진 기계평면시일의 변형거동 특성 해석)

  • 조승현;고영배;김청균
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.341-349
    • /
    • 2001
  • Heat distortion of the non-contacting mechanical face seal is affected by friction heat between primary seal and seal sheet. The fluid or gas in mechanical face seal maintains operating gap, cooling friction heat and lubricates at the face of seal. So we designed face of seal for inclined face. inclined face of seal improves fluid or gas flow at the face of seal and it increases circumferential velocity at outer radius of the seal so temperature of the seal is decreased by low heat transfer coefficient at there. In this paper, inclined face seal are analysed numerically using finite element method for proof improve inclined face seal performance. Angle of the incline face used for FEA is from 50$^{\circ}$to 90$^{\circ}$and for explaining the effects of inclined face in seal, we get temperature, face distortion, and stress in the seal with variable operating gap and rotating speeds. Result of analysis shows that angle of the incline face is 60$^{\circ}$come to good thermal distortion characteristics.

  • PDF

Face Recognition Research Based on Multi-Layers Residual Unit CNN Model

  • Zhang, Ruyang;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.11
    • /
    • pp.1582-1590
    • /
    • 2022
  • Due to the situation of the widespread of the coronavirus, which causes the problem of lack of face image data occluded by masks at recent time, in order to solve the related problems, this paper proposes a method to generate face images with masks using a combination of generative adversarial networks and spatial transformation networks based on CNN model. The system we proposed in this paper is based on the GAN, combined with multi-scale convolution kernels to extract features at different details of the human face images, and used Wasserstein divergence as the measure of the distance between real samples and synthetic samples in order to optimize Generator performance. Experiments show that the proposed method can effectively put masks on face images with high efficiency and fast reaction time and the synthesized human face images are pretty natural and real.

A Fast and Accurate Face Detection and Tracking Method by using Depth Information (깊이정보를 이용한 고속 고정밀 얼굴검출 및 추적 방법)

  • Bae, Yun-Jin;Choi, Hyun-Jun;Seo, Young-Ho;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.586-599
    • /
    • 2012
  • This paper proposes a fast face detection and tracking method which uses depth images as well as RGB images. It consists of the face detection procedure and the face tracking procedure. The face detection method basically uses an existing method, Adaboost, but it reduces the size of the search area by using the depth image. The proposed face tracking method uses a template matching technique and incorporates an early-termination scheme to reduce the execution time further. The results from implementing and experimenting the proposed methods showed that the proposed face detection method takes only about 39% of the execution time of the existing method. The proposed tracking method takes only 2.48ms per frame with $640{\times}480$ resolution. For the exactness, the proposed detection method showed a little lower in detection ratio but in the error ratio, which is for the cases when a detected one as a face is not really a face, the proposed method showed only about 38% of that of the previous method. The proposed face tracking method turned out to have a trade-off relationship between the execution time and the exactness. In all the cases except a special one, the tracking error ratio is as low as about 1%. Therefore, we expect the proposed face detection and tracking methods can be used individually or in combined for many applications that need fast execution and exact detection or tracking.

The Long Distance Face Recognition using Multiple Distance Face Images Acquired from a Zoom Camera (줌 카메라를 통해 획득된 거리별 얼굴 영상을 이용한 원거리 얼굴 인식 기술)

  • Moon, Hae-Min;Pan, Sung Bum
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.6
    • /
    • pp.1139-1145
    • /
    • 2014
  • User recognition technology, which identifies or verifies a certain individual is absolutely essential under robotic environments for intelligent services. The conventional face recognition algorithm using single distance face image as training images has a problem that face recognition rate decreases as distance increases. The face recognition algorithm using face images by actual distance as training images shows good performance but this has a problem that it requires user cooperation. This paper proposes the LDA-based long distance face recognition method which uses multiple distance face images from a zoom camera for training face images. The proposed face recognition technique generated better performance by average 7.8% than the technique using the existing single distance face image as training. Compared with the technique that used face images by distance as training, the performance fell average 8.0%. However, the proposed method has a strength that it spends less time and requires less cooperation to users when taking face images.

Face Spoofing Attack Detection Using Spatial Frequency and Gradient-Based Descriptor

  • Ali, Zahid;Park, Unsang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.892-911
    • /
    • 2019
  • Biometric recognition systems have been widely used for information security. Among the most popular biometric traits, there are fingerprint and face due to their high recognition accuracies. However, the security system that uses face recognition as the login method are vulnerable to face-spoofing attacks, from using printed photo or video of the valid user. In this study, we propose a fast and robust method to detect face-spoofing attacks based on the analysis of spatial frequency differences between the real and fake videos. We found that the effect of a spoofing attack stands out more prominently in certain regions of the 2D Fourier spectra and, therefore, it is adequate to use the information about those regions to classify the input video or image as real or fake. We adopt a divide-conquer-aggregate approach, where we first divide the frequency domain image into local blocks, classify each local block independently, and then aggregate all the classification results by the weighted-sum approach. The effectiveness of the methodology is demonstrated using two different publicly available databases, namely: 1) Replay Attack Database and 2) CASIA-Face Anti-Spoofing Database. Experimental results show that the proposed method provides state-of-the-art performance by processing fewer frames of each video.

Implementation of Face Detection System on Android Platform for Real-Time Applications (실시간 응용을 위한 안드로이드 플랫폼에서의 안면 검출 시스템 구현)

  • Han, Byung-Gil;Lim, Kil-Taek
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.3
    • /
    • pp.137-143
    • /
    • 2013
  • This paper describes an implementation of face detection technology for a real-time application on the Android platform. Java class of Face-Detection for detection of human face is provided by the Android API. However, this function is not suitable to apply for the real-time applications due to inadequate detection speed and accuracy. In this paper, the AdaBoost based classification method which utilizes Local Binary Pattern (LBP) histogram is employed for face detection. The face detection module has been developed by C/C++ language for high-speed image processing, and this module is included to the Android platform using the Java Native Interface (JNI). The experiments were carried out in the Java-based environment and JNI-based environment. The experimental results have shown that the performance of JNI-based is faster than Java-based method and our system is well enough to apply for real-time applications.

A Robust Face Detection Method Based on Skin Color and Edges

  • Ghimire, Deepak;Lee, Joonwhoan
    • Journal of Information Processing Systems
    • /
    • v.9 no.1
    • /
    • pp.141-156
    • /
    • 2013
  • In this paper we propose a method to detect human faces in color images. Many existing systems use a window-based classifier that scans the entire image for the presence of the human face and such systems suffers from scale variation, pose variation, illumination changes, etc. Here, we propose a lighting insensitive face detection method based upon the edge and skin tone information of the input color image. First, image enhancement is performed, especially if the image is acquired from an unconstrained illumination condition. Next, skin segmentation in YCbCr and RGB space is conducted. The result of skin segmentation is refined using the skin tone percentage index method. The edges of the input image are combined with the skin tone image to separate all non-face regions from candidate faces. Candidate verification using primitive shape features of the face is applied to decide which of the candidate regions corresponds to a face. The advantage of the proposed method is that it can detect faces that are of different sizes, in different poses, and that are making different expressions under unconstrained illumination conditions.

A numerical study on the safety of tunnel face using face bolting method (페이스 볼트 공법을 이용한 터널 막장 안정성에 관한 수치해석적 연구)

  • Ra, Jee-Hyun;Yoon, Ji-Sun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.1
    • /
    • pp.83-89
    • /
    • 2007
  • As tunnel excavation generats stress release, a stability security of tunnel face is mainly important in case of tunnel excavation in the weak grounds. Using the steel bar or glass fiber pipe which had regular hardness, a face bolt method to reinforce previously is applied to an excavation object tunnel face aspect among measures methods regarding this. Therefore, used $FLAC^{3D}$ Ver. 2.1 on 5 Case of 0.5D (2EA), 1.0D, 1.5D, 2.0D with the length and 6 Case of 0, 20, 40, 60, 80, 100EA with the number of the bolt that a face bolt method was installed at these papers in the necessary weak grounds in order to review applicability of the tunnel face reinforcement method that used these face bolts, and executed three dimension continuous analysis.

  • PDF