• Title/Summary/Keyword: Fabrication Process

Search Result 4,350, Processing Time 0.032 seconds

Micro Fabrication Process of Powder Compact with Semi-solid Mold

  • Tsumori, Fujio
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.258-259
    • /
    • 2006
  • New powder compaction process, in which a Bingham semi-solid/fluid mold is utilized, is developed to fabricate micro parts. In the present process, a powder material is filled as slurry in a solid wax mold, dried and compressed. The wax is heated during compaction and becomes semi-solid state, which can acts as a pressurized medium for isostatic compaction. Since the compacted micro parts are very fragile, the mold's temperature is controlled to higher than its melting point during unloading, to avoid breakage of the compacts. To demonstrate effectiveness of this process, some micro compacts of alumina are shown as examples.

  • PDF

A FEASIBILITY STUDY ON THE NUMERICAL PRE-ASSEMBLY SIMULATION USING 3D LASER SCANNING MEASUREMENT

  • Kyoungmin Kim ;Seok Kim ;Chan-Hyuk Park ;Kyong Ju Kim
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.1193-1198
    • /
    • 2005
  • The pre-assembly takes a large portion of the fabrication cost of steel bridges. In order to save the fabrication cost through the improvement of the conventional pre-assembling process, this research investigates a numerical pre-assembly simulation as an alternative to current pre-assembling process. The 3D laser scanning was utilized in site and measuring data for steel box were analyzed. The productivity of pre-assembly simulation system is compared with the conventional pre-assembling system. This paper identifies feasibility on the alternative pre-assembling process and then proposes the scheme of the pre-assembly simulation system development satisfying the current pre-assembly inspection of standards.

  • PDF

Facile Fabrication of Flexible In-Plane Graphene Micro-Supercapacitor via Flash Reduction

  • Kang, Seok Hun;Kim, In Gyoo;Kim, Bit-Na;Sul, Ji Hwan;Kim, Young Sun;You, In-Kyu
    • ETRI Journal
    • /
    • v.40 no.2
    • /
    • pp.275-282
    • /
    • 2018
  • Flash reduction of graphene oxide is an efficient method for producing high quality reduced graphene oxide under room temperature ambient conditions without the use of hazardous reducing agents (such as hydrazine and hydrogen iodide). The entire process is fast, low-cost, and suitable for large-scale fabrication, which makes it an attractive process for industrial manufacturing. Herein, we present a simple fabrication method for a flexible in-plane graphene micro-supercapacitor using flash light irradiation. All carbon-based, monolithic supercapacitors with in-plane geometry can be fabricated with simple flash irradiation, which occurs in only a few milliseconds. The thinness of the fabricated device makes it highly flexible and thus useful for a variety of applications, including portable and wearable electronics. The rapid flash reduction process creates a porous graphene structure with high surface area and good electrical conductivity, which ultimately results in high specific capacitance ($36.90mF\;cm^{-2}$) and good cyclic stability up to 8,000 cycles.

Development of 3D Micro-Nano Hybrid Patterns Using Anodized Aluminum and Micro-Indentation (양극산화된 알루미늄과 마이크로 인덴데이션을 이용한 3차원 마이크로-나노 하이브리드 패턴 제작)

  • Kwon, Jong-Tae;Shin, Hong-Gue;Kim, Byeong-Hee;Seo, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1139-1143
    • /
    • 2007
  • A simple method for the fabrication of 3D micro-nano hybrid patterns was presented. In conventional fabrication methods of the micro-nano hybrid patterns, micro-patterns were firstly fabricated and then nano-patterns were formatted on the micro-patterns. Moreover, these micro-nano hybrid patterns could be fabricated on the flat substrate. In this paper, we suggested the fabrication method of 3D micro-nano hybrid patterns using micro-indentation on the anodized aluminum substrate. Since diameter of the hemispherical nano-pattern can be controlled by electrolyte and applied voltage in the anodizing process, we can easily fabricated nano-patterns of diameter of loom to 300nm. Nano-patterns were firstly formatted on the aluminum substrate, and then micro-patterns were fabricated by deforming the nano-patterned aluminum substrate. Hemispherical nano-patterns of diameter of 150nm were fabricated by anodizing process, and then micro-pyramid patterns of the side-length of $50{\mu}m$ were formatted on the nano-patterns using micro-indentation. Finally we successfully replicated 3D micro-nano hybrid patterns by hot-embossing process. 3D micro-nano hybrid patterns can be applied to nano-photonic device and nano-biochip application.

Status of Research on Selective Laser Sintering of Nanomaterials for Flexible Electronics Fabrication (나노물질의 선택적 레이저소결을 이용한 유연전기소자 구현 연구현황)

  • Ko, Seung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.533-538
    • /
    • 2011
  • A plastic-compatible low-temperature metal deposition and patterning process is essential for the fabrication of flexible electronics because they are usually built on a heat-sensitive flexible substrate, for example plastic, fabric, paper, or metal foil. There is considerable interest in solution-processible metal nanoparticle ink deposition and patterning by selective laser sintering. It provides flexible electronics fabrication without the use of conventional photolithography or vacuum deposition techniques. We summarize our recent progress on the selective laser sintering of metals and metal oxide nanoparticles on a polymer substrate to realize flexible electronics such as flexible displays and flexible solar cells. Future research directions are also discussed.

Design and Fabrication of Low-Voltage Twisting-Type Thermal Actuators for Micromirrors (마이크로 거울의 구동을 위한 저전압 비틀림형 열구동기의 설계 및 제작)

  • Kim, Dong-Hyun;Park, Yong-Chul;Park, Seung-Ho;Kwon, Oh-Myoung;Choi, Young-Ki;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.10
    • /
    • pp.803-810
    • /
    • 2009
  • Micromirrors have a wide range of applications such as optical switches, laser scanners, and digital projection displays. Due to their low performances and high costs, however, practical applications of micromirrors are quite limited. At present micromirrors demand not only a better design but also a simple fabrication process. In this study a twisting-type micromirror that can be driven by two thermal bimorph actuators bending in opposite directions is designed from electro-thermo-mechanical theories and fabricated through a simple MEMS process. Each actuator consists of $SiO_2$ and gold thin-film layers. Simplified analytical model has been built to optimize the performance of micromirror. Due to unexpected resistance increase of metal film and alignment mismatch during fabrication process, experimental rotation angles of micromirrors are about $11^{\circ}$ at applied voltages less than 0.6V. From numerical simulation and analytical studies, however, the next design can provide rotation angles over $20^{\circ}$ at the same applied voltage.

Additive Process Using Femto-second Laser for Manufacturing Three-dimensional Nano/Micro-structures

  • Yang, Dong-Yol;Lim, Tae-Woo;Son, Yong;Kong, Hong-Jin;Lee, Kwang-Sup;Kim, Dong-Pyo;Park, Sang-Hu
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.4
    • /
    • pp.63-69
    • /
    • 2007
  • The two-photon stereolithography (TPS) process is a promising technique for the fabrication of real three-dimensional (3D) nano/micro-structures via application of a femto-second laser, In TPS, when a near-infrared ultrashort-pulsed laser is closely focused onto a confined volume of photocurable resin, only the local area at the center of the focus is cured. Therefore, real 3D microstructures with resolution under the diffraction limit can be fabricated through a layer-by-layer accumulative technique, This process provides opportunities to develop neo-conceptive nano/micro devices in IT/BT industries, However, a number of issues, including development of effective fabrication methods, highly sensitive and functional materials, and neo-conceptive devices using TPS, must be addressed for the realization of industrial application of TPS. In this review article, we discuss our efforts related to TPS: effective fabrication methods, diverse two-photon curable materials for high functional devices, and applications.

Fabrication of 3-Dimensional Microstructures for Bulk Micromachining by SDB and Electrochemical Etch-Stop (SDB와 전기화학적 식각정지에 의한 벌크 마이크로머신용 3차원 미세구조물 제작)

  • 정귀상;김재민;윤석진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.11
    • /
    • pp.958-962
    • /
    • 2002
  • This paper reports on the fabrication of free-standing microstructures by DRIE (deep reactive ion etching). SOI (Si-on-insulator) structures with buried cavities are fabricated by SDB (Si-wafer direct bonding) technology and electrochemical etch-stop. The cavity was formed the upper handling wafer by Si anisotropic etch technique. SDB process was performed to seal the formed cavity under vacuum condition at -760 mmHg. In the SDB process, captured air and moisture inside of the cavities were removed by making channels towards outside. After annealing (100$0^{\circ}C$, 60 min.), the SDB SOI structure with a accurate thickness and a good roughness was thinned by electrochemical etch-stop in TMAH solution. Finally, it was fabricated free-standing microstructures by DRIE. This result indicates that the fabrication technology of free-standing microstructures by combination SDB, electrochemical etch-stop and DRIE provides a powerful and versatile alternative process for high-performance bulk micromachining in MEMS fields.

Microlens and Arrays Fabrication by the Modified LIGA and Hot Embossing Process (변형 DEEP X-ray 공정과 Hot Embossing 공정을 이용한 마이크로 렌즈 및 어레이의 제작)

  • 이정아;이현섭;이성근;이승섭;권태헌
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.228-232
    • /
    • 2003
  • Mircolens and microlens arrays are realized using a novel fabrication technology based on the exposure of a resist, usually PMMA, to deep X-rays and subsequent thermal treatment. Hot embossing process is also studied for mass production. The fabrication technology is very simple and produces microlenses and microlens arrays with good surface roughness of several nm. The molecular weight and glass transition temperature of PMMA is reduced when it is irradiated with deep X-rays. The microlenses were produced through the effects of volume change, surface tension. and reflow during thermal treatment of irradiated PMMA. A hot embossing machine is designed and manufactured with a servo motor transfer system. The hot embossing process follows the steps of heating mold to the desired temperature, embossing a mold insert on substrate. cooling mold to the de-embossing temperature. and de-embossing. Microlenses were produced with diameters ranging from 30 to 1500 ${\mu}{\textrm}{m}$. The surface X-ray mask is also fabricated to realize microlens arrays on PMMA sheet with a large area.

  • PDF

A Study on Fabrication of Inner Structure Plate with Micro Corrugated Using Press Forming (프레스 공정을 이용한 미세 골판형 내부구조재 제작에 관한 연구)

  • Choi, Doo-Sun;Je, Tae-Jin;Kim, Hyung-Jong;Kim, Bo-Hwan;Huh, Byung-Woo;Seong, Dae-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.61-67
    • /
    • 2006
  • Sandwich structures, which are composed of a thick core between two faces, are commonly used in many engineering applications because they combine high stiffness and strength with low weight. Accordingly, the usage of sandwich structure is very widely applied to the aircraft, the automobile and marine industry, etc., because of these advantages. In this paper, we have investigated the buckling protection of an inner structure plate and the useful corrugated configuration for contact, and the fabrication method of the inner structure plate for large area using the continuous molding process. Also, we have guaranteed the accuracy of the molding process through the micro corrugated mold fabrication and secured the accuracy and analyzed aspect properties of the inner structure plate fabricated for a large area using the partial mold process. We have compared molding simulation according to the aspect thickness of the corrugated configuration with the molding experiment results.