• Title/Summary/Keyword: FLC (Fuzzy Logic Control) system

Search Result 163, Processing Time 0.026 seconds

PDA/FLC depth control of underwater vehicles with deadzone (사역대를 갖는 수중운동체의 PDA/FLC 심도제어)

  • 김종식;정재호;최중락
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1080-1085
    • /
    • 1993
  • A nonlinear control algorithm for the depth control of underwater vehicles is presented. In order to consider the deadzone effect of the flow control valve, a nonlinear fuzzy logic controller (FLC) is synthesized and combined with a linear proportional-derivative-acceleration (PDA) controller, which is called, the PDA/FLC controller. And, to show the effectiveness of the PDA/FLC control system, it is compared with the linear PDA control system through computer simulation. It is found that the PDA/FLC control scheme is a suitable one to maintain the desirable depth of underwater vehicles with deadzone.

  • PDF

DESIGN AND DEVELOPMENT OF AN OPTIMAL INTELLIGENT FUZZY LOGIC CONTROLLER FOR LASER TRACKING SYSTEM

  • Lu, Jia;Cannady, James
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2258-2263
    • /
    • 2003
  • This paper presents the design and development of an optimal fuzzy logic controller (FLC) for a laser tracking system. An optimal intelligent fuzzy logic controller was founded on integral criterion of the fuzzy models and three-dimensional fuzzy control. Research had been also concentrated on the methods for multivariable fuzzy models for the purposes of real-time process. Simulation results have shown remarkable tracking performance of this fuzzy PID controller.

  • PDF

A Fuzzy Logic Controller for Speed Control of a DC Series Motor Using an Adaptive Evolutionary Computation

  • Hwang, Gi-Hyun;Hwang, Hyun-Joon;Kim, Dong-Wan;Park, June-Ho
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.13-18
    • /
    • 2000
  • In this paper, an Adaptive Evolutionary Computation(AEC) is proposed. AEC uses a genetic algorithm(GA) and an evolution strategy (ES) in an adaptive manner is order to take merits of two different evolutionary computations: global search capability of GA and local search capability of ES. In the reproduction procedure, proportions of the population by GA and ES are adaptively modulated according to the fitness. AEC is used to design the membership functions and the scaling factors of fuzzy logic controller (FLC). To evaluate the performances of the proposed FLC, we make an experiment on FLC for the speed control of an actual DC series motor system with nonlinear characteristics. Experimental results show that the proposed controller has better performance than that of PD controller.

  • PDF

A Design of Fuzzy Logic Controllers for High-Angle-of-Attack Flight Control of Aircraft Using Adaptive Evolutionary Algorithms (적응진화 알고리즘을 이용한 항공기의 고공격각 비행 제어를 위한 퍼지 제어기 설계)

  • Won, Taep-Hyun;Hwang, Gi-Hyun;Park, June-Ho;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.995-1002
    • /
    • 2000
  • In this paper, fuzzy logic controllers(FLC) are designed for control of flight. For tuning FLC, we used adaptive evolutionary algorithms(AEA) which uses a genetic algorithm(GA) and an evolution strategy (ES) in an adaptive manner in order to take merits of two different evolutionary computations. We used AEA to search for optimal settings of the membership functions shape and gains of the inputs and outputs of FLC. Finally, the proposed controller is applied to the high-angle-of-attack flight system for a supermaneuverable version of the f-18 aircraft and compares with other methods.

  • PDF

CELL STATE SPACE ALGORITHM AND NEURAL NETWORK BASED FUZZY LOGIC CONTROLLER DESIGN

  • Aao;Ding, Gen-Ya
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.972-974
    • /
    • 1993
  • This paper presents a new method to automatically design fuzzy logic controller(FLC). The main problems of designing FLC are how to optimally and automatically select the control rules and the parameters of membership function (MF). Cell state space algorithms (CSS), differential competitive learning (DCL) and multialyer neural network are combined in this paper to solve the problems. When the dynamical model of a control process is known. CSS can be used to generate a group of optimal input output pairs(X, Y) used by a controller. The(X, Y) then can be used to determine the FLC rules by DCL and to determine the optimal parameters of MF by DCL and to determine the optimal parameters of MF by multilayer neural network trained by BP algorithm.

  • PDF

Design and Evaluation of AFS and ARS Controllers with Sliding Mode Control and Fuzzy Logic Control Method (Sliding Mode Control 및 Fuzzy Logic Control 방법을 이용한 AFS 및 ARS 제어기 설계 및 성능 평가)

  • Song, Jeonghoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.72-80
    • /
    • 2013
  • This study is to develop and evaluate an AFS and an ARS controllers to enhance lateral stability of a vehicle. A sliding mode control (SMC) and a fuzzy logic control (FLC) methods are applied to calculate the desired additional steering angle of AFS equipped vehicle or desired rear steer angle of ARS equipped vehicle. To validate AFS and ARS systems, an eight degree of freedom, nonlinear vehicle model and an ABS controllers are also used. Several road conditions are used to test the performances. The results showed that the yaw rate of the AFS and the ARS vehicle followed the reference yaw rate very well within the adhesion limit. However, the AFS improves the lateral stability near the limit compared with the ARS. Because the SMC and the FLC show similar vehicle responses, performance discrimination is small. On split-${\mu}$ road, the AFS and the ARS vehicle had enhanced the lateral stability.

Design of Adaptive Fuzzy Logic Controller for SVC using Neural Network (신경회로망을 이용한 SVC용 적응 퍼지제어기의 설계)

  • Son, Jong-Hun;Hwang, Gi-Hyun;Kim, Hyung-Su;Park, June-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.121-126
    • /
    • 2002
  • We proposed the design of SVC adaptive fuzzy logic controller(AFLC) using Tabu search and neural network. We tuned the gains of input-output variables of fuzzy logic controller(FLC) and weights of neural network using Tabu search. Neural network was used for adaptively tuning the output gain of FLC. The weights of neural network was learned from the back propagation algorithm in real-time. To evaluate the usefulness of AFLC, we applied the proposed method to single-machine infinite system. AFLC showed the better control performance than PD controller and GAFLC[8] for. three-phase fault in nominal load which had used when tuning AFLC. To show the robustness of AFLC, we applied the proposed method to disturbances such as three-phase fault in heavy and light load. AFLC showed the better robustness than PD controller and GAFLC[8].

  • PDF

Optimazation of Simulated Fuzzy Car Controller Using Genetic Algorithm (유전자 알고즘을 이용한 자동차 주행 제어기의 최적화)

  • Kim Bong-Gi
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.212-219
    • /
    • 2006
  • The important problem in designing a Fuzzy Logic Controller(FLC) is generation of fuzzy control rules and it is usually the case that they are given by human experts of the problem domain. However, it is difficult to find an well-trained expert to any given problem. In this paper, I describes an application of genetic algorithm, a well-known global search algorithm to automatic generation of fuzzy control rules for FLC design. Fuzzy rules are automatically generated by evolving initially given fuzzy rules and membership functions associated fuzzy linguistic terms. Using genetic algorithm efficient fuzzy rules can be generated without any prior knowledge about the domain problem. In addition expert knowledge can be easily incorporated into rule generation for performance enhancement. We experimented genetic algorithm with a non-trivial vehicle controling problem. Our experimental results showed that genetic algorithm is efficient for designing any complex control system and the resulting system is robust.

Design of Fuzzy Controller using Genetic Algorithm with a Local Improvement Mechanism (부분개선 유전자알고리즘을 이용한 퍼지제어기의 설계)

  • Kim, Hyun-Su;Paul N., Roschke;Lee, Dong-Guen
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.469-476
    • /
    • 2005
  • To date, many viable smart base isolation systems have been proposed. In this study, a novel friction pendulum system (FPS) and an MR damper are employed as the isolator and supplemental damping device, respectively. A fuzzy logic controller (FLC) is used to modulate the MR damper. A genetic algorithm (GA) is used for optimization of the FLC. The main purpose of employing a GA is to determine appropriate fuzzy control rules as well to adjust parameters of the membership functions. To this end, a GA with a local improvement mechanism is applied. Neuro-fuzzy models are used to represent dynamic behavior of the MR damper and FPS. Effectiveness of the proposed method for optimal design of the FLC is judged based on computed responses to several historical earthquakes. It has been shown that the proposed method can find appropriate fuzzy rules and the GA-optimized FLC outperforms not only a passive control strategy but also a human-designed FLC and a conventional semi-active control algorithm.

  • PDF

Vibration Control of Flexible Nonlinear System using GA based Fuzzy Logic Controller

  • Heo, Hoon;Han, Jungyoup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.142-146
    • /
    • 1995
  • In the paper, Fuzzy Logic Controller(FLC) that determines its optimal coefficients using Genetic Algorithms is considered. It is also applied to the inverted pendulum problem known popularly as a standard plant. Flexibility of the inverted pendulum has been taken into account. In the results, Fuzzy Logic Controller under consideration successfully controls both rigid mode and flexible mode. The rule base of Fuzzy Logic Controller is automatically tuned using not only trial-error method but also Genetic Algorithms.

  • PDF