• Title/Summary/Keyword: FFM (Friction force measurement)

Search Result 6, Processing Time 0.021 seconds

A Study on Tribological Properties of Diamond-like Carbon Thin Film for the Application to Solid Lubricant of MEMS Devices (MEMS 소자의 고체윤활박막으로 활용하기 위한 다이아몬드상 카본 박막의 트라이볼로지 특성 분석)

  • Choi, Won-Seok;Hong, Byung-You
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.1010-1013
    • /
    • 2006
  • Hydrogenated Diamond-like carbon (DLC) films were Prepared by the radio frequency plasma enhanced chemical vapor deposition (RF PECVD) method on silicon substrates using methane $(CH_4)$ and hydrogen $(H_2)$ gas for the application to solid lubricant of MEMS devices. We have checked the influence of varying RF power on tribological properties of DLC film. We have checked their performance as two kinds of method such as FFM (Friction Force Microscope) and BOD (Ball-on Disk) measurement. The friction coefficients and the contact number of cycles to steady state decreased as the increase of RF power with FFM and BOD measurement, respectively.

An Analysis of Tribological Properties of Metal Interlayered DLC Films Prepared by PECVD Method (PECVD로 증착된 금속층을 포함하는 DLC 박막의 기계적 특성 분석)

  • Jeon, Young-Sook;Choi, Won-Seok;Hong, Byung-You
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.631-635
    • /
    • 2006
  • The properties of metal interlayered DLC films between the Si substrate and the DLC films were studied. DC magnetron sputtering method has been used to deposit intermediate layers of metals. And RF-PECVD method has been employed to synthesize DLC onto substrates of the silicon and metal layers. After we used metal Inter-layers, such as chromium, nickel, titanium and we studied tribological properties of the DLC films. The thickness of films were observed by field emission scanning electron microscope (FE-SEM). Also the surface morphology of the films were observed by an atomic force microscope (AFM). The crystallographic properties of the films were analyzed with X-ray diffraction (XRD), the friction coefficients were investigated by AFM in friction force microscope (FFM) mode. Tribological performances of the films were estimated by nano-indenter, stress tester measurement.

Physical Properties of Diamond-like Carbon Thin Films Prepared by a Microwave Plasma-Enhanced Chemical Vapor Deposition (마이크로웨이브 화학기상증착법으로 성장된 다이아몬드상 카본박막의 물리적인 특성연구)

  • Choi, Won-Seok;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.791-794
    • /
    • 2003
  • DLC thin films were prepared by microwave plasma-enhanced chemical vapor deposition method on silicon substrates using methane ($CH_4$) and hydrogen ($H_2$) gas mixture. The negative DC bias ($-450V{\sim}-550V$) was applied to enhance the adhesion between the film and the substrate. The films were characterized by Raman spectrometer. The surface morphology was observed by an atomic force microscope (AFM). And also, the friction coefficients were investigated by AFM in friction force microscope (FFM) mode, which were compared with the pin-on-disc (POD) measurement.

  • PDF

Physical Properties of Diamond-like Carbon Thin Films Prepared by a Microwave Plasma-Enhanced Chemical Vapor Deposition (마이크로웨이브 화학기상증착법으로 성장된 다이아몬드상 카본박막의 물리적인 특성연구)

  • Choi, Won-Seok;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.842-845
    • /
    • 2003
  • DLC thin films were prepared by microwave plasma-enhanced chemical vapor deposition method on silicon substrates using methane ($CH_4$) and hydrogen ($H_2$) gas mixture. The negative DC bias ($-450V{\sim}-550V$) was applied to enhance the adhesion between the film and the substrate. The films were characterized by Raman spectrometer. The surface morphology was observed by an atomic force microscope (AFM). And also, the friction coefficients were investigated by AFM in friction force microscope (FFM) mode, which were compared with the pin-on-disc (POD) measurement.

  • PDF

Tribological Properties of Annealed Diamond-like Carbon Film Synthesized by RF PECVD Method

  • Choi, Won-Seok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.3
    • /
    • pp.118-122
    • /
    • 2006
  • Diamond-like carbon (DLC) films were prepared on silicon substrates by the RF PECVD (Plasma Enhanced Chemical Vapor Deposition) method using methane $(CH_4)$ and hydrogen $(H_2)$ gas. We examined the effects of the post annealing temperature on the tribological properties of the DLC films using friction force microscopy (FFM). The films were annealed at various temperatures ranging from 300 to $900^{\circ}C$ in steps of $200^{\circ}C$ using RTA equipment in nitrogen ambient. The thickness of the film was observed by scanning electron microscopy (SEM) and surface profile analysis. The surface morphology and surface energy of the films were examined using atomic force microscopy and contact angle measurement, respectively. The hardness of the DLC film was measured as a function of the post annealing temperature using a nano-indenter. The tribological characteristics were investigated by atomic force microscopy in FFM mode.

Micro/Nanotribology and Its Applications

  • Bhushan, Bharat
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.128-135
    • /
    • 1995
  • Atomic force microscopy/friction force microscopy (AFM/FFM) techniques are increasingly used for tribological studies of engineering surfaces at scales, ranging from atomic and molecular to microscales. These techniques have been used to study surface roughness, adhesion, friction, scratching/wear, indentation, detection of material transfer, and boundary lubrication and for nanofabrication/nanomachining purposes. Micro/nanotribological studies of single-crystal silicon, natural diamond, magnetic media (magnetic tapes and disks) and magnetic heads have been conducted. Commonly measured roughness parameters are found to be scale dependent, requiring the need of scale-independent fractal parameters to characterize surface roughness. Measurements of atomic-scale friction of a freshly-cleaved highly-oriented pyrolytic graphite exhibited the same periodicity as that of corresponding topography. However, the peaks in friction and those in corresponding topography were displaced relative to each other. Variations in atomic-scale friction and the observed displacement has been explained by the variations in interatomic forces in the normal and lateral directions. Local variation in microscale friction is found to correspond to the local slope suggesting that a ratchet mechanism is responsible for this variation. Directionality in the friction is observed on both micro- and macro scales which results from the surface preparation and anisotropy in surface roughness. Microscale friction is generally found to be smaller than the macrofriction as there is less ploughing contribution in microscale measurements. Microscale friction is load dependent and friction values increase with an increase in the normal load approaching to the macrofriction at contact stresses higher than the hardness of the softer material. Wear rate for single-crystal silicon is approximately constant for various loads and test durations. However, for magnetic disks with a multilayered thin-film structure, the wear of the diamond like carbon overcoat is catastrophic. Breakdown of thin films can be detected with AFM. Evolution of the wear has also been studied using AFM. Wear is found to be initiated at nono scratches. AFM has been modified to obtain load-displacement curves and for nanoindentation hardness measurements with depth of indentation as low as 1 mm. Scratching and indentation on nanoscales are the powerful ways to screen for adhesion and resistance to deformation of ultrathin fdms. Detection of material transfer on a nanoscale is possible with AFM. Boundary lubrication studies and measurement of lubricant-film thichness with a lateral resolution on a nanoscale have been conducted using AFM. Self-assembled monolyers and chemically-bonded lubricant films with a mobile fraction are superior in wear resistance. Finally, AFM has also shown to be useful for nanofabrication/nanomachining. Friction and wear on micro-and nanoscales have been found to be generally smaller compared to that at macroscales. Therefore, micro/nanotribological studies may help def'me the regimes for ultra-low friction and near zero wear.