• 제목/요약/키워드: FE models

검색결과 626건 처리시간 0.027초

로워암 커넥터 열간단조 공정의 유한요소해석 및 미세조직 예측 (FE Analysis of Hot Forging Process and Microstructure Prediction for Lower Arm Connector)

  • 박종진;황한섭;임상주;홍승찬;임성환;이경섭;이경종
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1243-1250
    • /
    • 2003
  • In the present study, hot forging process for a lower arm connector of an automobile was investigated. An FEM code, DEFORM-3D, was used to analyze the process and the process parameters, such as temperature, strain and strain rate, were obtained. The microstructure of the connector was predicted by applying the Sellars and Yada microstructure evolution models to the process parameters. The method of microstructure prediction used in the present study seems to be effective for the quality assurance of a forged automotive product.

주기적 변형 경계조건을 적용한 면내 유효 탄성 물성치의 계산 (Evaluation of Effective In-Plane Elastic Properties by Imposing Periodic Displacement Boundary Conditions)

  • 정일섭
    • 대한기계학회논문집A
    • /
    • 제28권12호
    • /
    • pp.1950-1957
    • /
    • 2004
  • Analysis for structures composed of materials containing regularly spaced in-homogeneities is usually executed by using averaged material properties. In order to evaluate the effective properties, a unit cell is defined and loaded somehow, and its response is investigated. The imposed loading, however, should accord to the status of unit cells immersed in the macroscopic structure to secure the accuracy of the properties. In this study, mathematical description for the periodicity of the displacement field is derived and its direct implementation into FE models of unit cell is attempted. Conventional finite element code needs no modification, and only the boundary of unit cell should be constrained in a way that the periodicity is preserved. The proposed method is applicable to skew arrayed in-homogeneity problems. Homogenized in-plane elastic properties are evaluated for a few representative cases and the accuracy is examined.

화강토의 구성방정식 및 터널 해석에의 적용 (Constitutive Models for Decomposed Granite Soil and Their Application to Tunnelling Problem)

  • 신종호
    • 한국지반공학회논문집
    • /
    • 제17권1호
    • /
    • pp.131-139
    • /
    • 2001
  • 화강토와 관련된 지반문제의 거동예측을 위한 수치해석의 적용이 양적인 면에서는 많이 확대되어왔지만 해석결과에 지대한 영향을 미치는 구성방정식 등 수치해석 모델링을 개선하고자 하는 노력은 부족하였다. 화강토 거동의 특징은 내재적 결합력으로 인한 구조화의 거동을 나타내는 것이며, 항복면이 평균유효응력 축에 대칭이고 Non-associated 소성거동을 보인다는 점이다. 본 연구에서는 이러한 화강토 거동을 표현하기 위하여 일반화된 한계상태모델을 도입하고, 이를 화강토의 경화거동 모델링이 가능하도록 확장하였다. 제안된 모델을 이용한 삼축시험의 유한요소 시뮬레이션 결과는 측정결과와 좋은 일치를 보였다. 화강토 지반내 터널에 대한 유한요소해석을 수행한 결과, 비선형 탄성모델과 조합된 확장된 한계상태모델이 현장계측결과와 잘 일치하는 결과를 주었다.

  • PDF

크랙이 존재하는 탄소/탄소 브레이크 디스크의 실험적/해석적 안정성 판별 (Safety Estimation of the Carbon/Carbon Brake Disk Having Crack by Experimental/Analytical Method)

  • 오세희;유재석;김천곤;홍창선;박종현
    • Composites Research
    • /
    • 제15권2호
    • /
    • pp.24-31
    • /
    • 2002
  • 본 논문에서는 탄소/탄소 브레이크 디스크의 시험 운용중에 키 슬롯부위의 하중지지부와 마찰재 사이에서 발생하는 크랙의 안정성에 대한 연구를 수행하였다. 이렇게 발생한 디스크 크랙의 안정성을 판별하기 위하여, 발생한 여러 가지 모양의 크랙에 대하여 충격을 고려한 반복하중실험 수행하였다. 또한 유한요소해석을 수행하여 크랙 팁(tip)의 음력집중현상과 진전가능성을 살펴보았다. 이와 같은 방법으로 디스크가 안정함을 확인하였다.

Biomechanical Finite Element Analysis of Bone Cemented Hip Crack Initiation According to Stem Design

  • Kim, Byeong-Soo;Moon, Byung-Young;Park, Jung-Hong
    • Journal of Mechanical Science and Technology
    • /
    • 제20권12호
    • /
    • pp.2168-2177
    • /
    • 2006
  • The purpose of this investigation was to determine the specific fracture mechanics response of cracks that initiate at the stem-cement interface and propagate into the cement mantle. Two-dimensional finite element models of idealized stem-cement-bone cross-sections from the proximal femur were developed for this study. Two general stem types were considered; Rectangular shape and Charnley type stem designs. The FE results showed that the highest principal stress in the cement mantle for each case occurred in the upper left and lower right regions adjacent to the stem-cement interface. There was also a general decrease in maximum tensile stress with increasing cement mantle thickness for both Rectangular and Charnley-type stem designs. The cement thickness is found to be one of the important fatigue failure parameters which affect the longevity of cemented femoral components, in which the thinner cement was significantly associated with early mechanical failure for shot-time period.

전단지연 이론을 이용한 단섬유 형태의 SMA 보강 고분자 복합재료의 열변형 거동 해석 (Thermo-Mechanical Behavior of Short SMA Reinforced Polymeric Composite Using Shear tag Theory)

  • 정태헌;이동주
    • 대한기계학회논문집A
    • /
    • 제23권6호
    • /
    • pp.1001-1010
    • /
    • 1999
  • Thermo-mechanical behavior of discontinuous shape memory alloy(SMA) reinforced polymeric composite has been studied using modified shear lag theory and finite element(FE) analysis with 2-D multi-fiber model. The aligned and staggered models of short-fiber arrangement are employed. The effects of fiber overlap and aspect ratio on the thermomechanical responses such as the thermal expansion coefficient are investigated. It is found that the increase of both tensile stress(resistance stress) in SMA fiber and compressive stress in polymer matrix with increasing aspect ratio is the main cause of low thermal deformation of the composite.

FEM 을 이용한 리브 부착에 따른 실린더 형상물의 모드 특성 비교 (Comparison of the effect of ribs on cylindrical structure using FEM)

  • 강귀현;김호산;박상길;이유엽;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1293-1296
    • /
    • 2007
  • In this paper, present a finite element method to reduce vibration of a cylindrical structure by avoiding resonance between motor and structure. To analysis the modes of structure, some different FE models (different places and combinations of ribs) of the structure with free-free condition were built and compared.

  • PDF

열연 강판의 잔류 응력 해석 (Residual Stress Analysis of Hot Rolled Strip)

  • 구진모;김홍준;이재권;황상무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.172-175
    • /
    • 2003
  • Run-Out-Table is the region between EDT and CT. Hot killed strip is cooled by air and water in ROT. In this procedure, phase transformation and shape deformation occur due to temperature drop. Because of un-ideal cooling condition, deformation of strip and non-uniform phase distribution come into existence. This phenomenon affects the strip property and lead th the existence of residual stress. And it exerts effects on the Coiling process, Coil Cooling process, and Un-coiling process. Through these process, the residual stresses of strip are more larger and unbalance of these stresses become more severe. Finite element (FE) based models for the analysises of non-steady state heat transfer and elastoplastic deformation are described in this investigation. The analysises of thermodynamics and phase transformation kinetics are suggested also. Using the ROT simulation result coiling process and coil cooling process simulations are carried out.

  • PDF

열간 후방압출된 Ti-6Al-4V 튜브의 성형결함 해석 (Assessement of Forming Defects in Hot Backward Extruded Ti-6Al-4V Tube)

  • 염종택;심인규;나영상;박노광;홍성석;심인옥
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.347-350
    • /
    • 2003
  • The metal forming behavior and defect formation in Ti-6Al-4V tube during hot backward extrusion were investigated. To predict the forming-defects such as shear band, inner cracks or surface cracks, dynamic material model(DMM) including Ziegler's instability criterion and modified Cockcroft-Latham fracture criterion(C-L model) were used. These models were coupled to the internal variables generated from FE analysis. The chilling effect and friction indicated a great influence on the deformation mode of the tube and the formation of surface cracks. The simulation results for the backward extrusion were compared with the experimental observations.

  • PDF

이온 빔 이용 통합시스템의 제작 및 구조해석 (Structural Analysis and Manufacturing of the Integrated System using Ion Beam)

  • 김성걸
    • 한국공작기계학회논문집
    • /
    • 제16권3호
    • /
    • pp.88-95
    • /
    • 2007
  • Generally, the integrated system using ion beam consists of 4 major parts, which are SEM, FIB, nano stage, and chamber. Among them, the nano stage and the chamber are designed and manufactured. The whole systems are integrated. Also, FE models are built to perform modal analyses of each part and the whole integrated system with a commercial program. Through these analyses, it is found that each part and the integrated system are very safe against vibrations including external excitations from ground and any others, because their natural frequencies are much larger than frequencies of external excitations. Also, isolation of ground induced vibration is considered.