• Title/Summary/Keyword: F-fiber

Search Result 732, Processing Time 0.029 seconds

Recycle of the Glass fiber Obtained from the Roving Cloth of FRP II: Study for the Physical Properties of fiber-reinforced Concrete (폐 FRP 선박의 로빙층에서 분리한 유리섬유의 재활용 II: 섬유강화 콘크리트의 물성에 관한 연구)

  • Kim, Yong-Seop;Lee, Seung-Hee;Yoon, Koo-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.1
    • /
    • pp.46-49
    • /
    • 2008
  • Recycling glass fiber, 'F-fiber,' was obtained by the separation of the roving layer from waste FRP and the concrete products or structures were considered for its application. Experiment was carried out for the bending strength of aggregate (2.45 of cement) by weight and F-fiber (density of 1.45, volume ratio to all of the aggregate and the cement). Whereas the specimen containing 1% F-fiber showed the bending strength 23% higher than that without F-fiber after curing far 28 days, the one with 0.5% F-fiber did not give any change. It could be found, therefore, that the minimum mixing amount should be larger than 0.5% fur the strength reinforcement. One of the reinforcing concrete product, bench flume, containing 1% F-fiber showed 21% increment of bending strength In contrast to that without F-fiber.

  • PDF

Applied Sound Frequency Monitoring in the Transformer Oil Using Fiber Optic Sagnac Interferometer (사냑형 간섭계 광섬유 센서를 이용한 변압기유 내에서의 외부 음향 주파수 모니터링)

  • Lee, Jongkil;Lee, Seunghong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.4
    • /
    • pp.288-294
    • /
    • 2015
  • The fiber optic Sagnac interferometer is well established as a sensor for detection of physical perturbations such as acoustic and vibration. In this paper acoustic signals generated in the cylindrical cavity submerged in transformer oil were measured by the fiber optic sensor array in one Sagnac loop. Two different external sound frequencies, $f_1$ and $f_2$, were applied to the sensor array simultaneously by using piezoelectric with frequency range from 5 kHz to 90 kHz. Based on the experimental results, fiber optic sensor detected harmonic series of applied sound frequency such as $f_1$, $f_2$, $2f_1$, $2f_2$, ${\mid}f_1-f_2{\mid}$, ${\mid}f_1+f_2{\mid}$. Suggested fiber optic sensor array can be applied to monitor physical quantities such as internal sound pressure and vibration due to partial discharge in the real electric transformer system.

Algebraic Fiber Space Whose Generic Fiber and Base Space Are of Almost General Type

  • Fukuda, Shigetaka
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.2
    • /
    • pp.203-209
    • /
    • 2014
  • We assume that the existence and termination conjecture for flips holds. A complex projective manifold is said to be of almost general type if the intersection number of the canonical divisor with every very general curve is strictly positive. Let f be an algebraic fiber space from X to Y. Then the manifold X is of almost general type if every very general fiber F and the base space Y of f are of almost general type.

Tensile Behavior of Fiber/Particle Hybrid Metal Matrix Composites (섬유/입자 혼합금속복합재료의 인장거동)

  • 정성욱;정창규;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.139-142
    • /
    • 2002
  • This study presents a mathematical model predicting the stress-strain behavior of fiber reinforced (FMMCs) and fiber/particle reinforced metal matrix composites (F/P MMCs). MMCs were fabricated by squeeze casting method using Al2O3 short fiber and particle as reinforcement, and A356 aluminum alloy as matrix. The fiber/particle ratios of F/P MMCs were 2:1, 1:1, 1:2 with the total reinforcement volume fraction of 20 vol.%, and the FMMCs were reinforced with 10 vol,%, 15 vol. %, 20 vol. % of fibers. Tensile tests were conducted and compared with predictions which were derived using laminate analogy theory and multi-failure model of reinforcements. Results show that the tensile strength of FMMCs with 10 vol.% of fiber was well matched with prediction, and as the fiber volume increases, predictions become larger than experimental results. The difference between the prediction and experiment is considered to be a result of matrix allowance of fiber damage in tensile loading. As the fiber volume fraction in FMMCs increases, the fiber damage increases and so that the tensile strength is reduced. The strength of F/P MMCs approaches more closely to the prediction than FMMCs reinforced with 20 vol.% of fibers because F/P MMCs contains small quantity of fibers and thus has a positive effect in fiber strengthening.

  • PDF

Interchannel RF Power Fluctuation in WDM-RoF System Employing Photonic Crystal Fiber (광결정 광섬유를 이용한 WDM-RoF 시스템의 채널간 전력변화 편차 분석)

  • Kim, So-Eun;Lee, Chung-Ghiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.821-828
    • /
    • 2012
  • In this paper, we report that the differences between RF power levels can be improved in wavelength division multiplexing - radio over fiber (WDM-RoF) system by using a photonic crystal fiber. In a WDM-RoF system, each WDM channel experiences different received RF power level fluctuation in remote node (RN) because of wavelength-dependent dispersion. Since each WDM channel experiences different power fluctuation, the RF power fluctuation acts as a design constraint in viewpoint of network design. We designed a photonic crystal fiber to improve the effect of wavelength- dependent dispersion on RF power fluctuation. Also, we analyzed the wavelength-dependent difference of inter-channel RF power fluctuations.

Investigation of Material Properties of the Steel Fiber Reinforced Concrete (강섬유 보강콘크리트의 재료적 성상에 관한 고찰)

  • 이현호;권영호;허무원;정현석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.733-736
    • /
    • 2002
  • As composite materials, the addition of steel fiber in concrete significantly improves the engineering properties of structural members. The purpose of this study is to define the strengthening effect of steel fiber in a point of material usage. From tile material test. compression strength, tensile splitting strength and flexural strength were evaluated by steel fiber volume fraction ($V_f$) and aspect ratio (AR) of steel fiber. In case of AR 67, $V_f$ 2.0% could be achieved maximum steel fiber strengthening effect. And the AR 80 case, $V_f$ 1.0% could be achieved maximum effect than the effect of $V_f$ 1.5%.

  • PDF

G(f)-SEQUENCES AND FIBRATIONS

  • Woo, Moo-Ha
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.709-715
    • /
    • 1997
  • For a fibration (E,B,p) with fiber F and a fiber map f, we show that if the inclusion $i : F \to E$ has a left homotopy inverse, then $G^f_n(E,F)$ is isomorphic to $G^f_n(F,E) \oplus \pi_n(B)$. In particular, by taking f as the identity map on E we have $G_n(E,F)$ is isomorphic to $G_n(F) \oplus \pi_n(B)$.

  • PDF

Recycle of the Glass Fiber Obtained from the Roving Cloth of FRP I: Study for the Physical Properties of Fiber-reinforced Mortar (폐 FRP 선박의 로빙층에서 분리한 유리섬유의 재활용 I: 섬유강화 모르타르의 물성에 관한 연구)

  • Yoon, Koo-Young;Kim, Yong-Seop;Lee, Seung-Hee
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.2
    • /
    • pp.102-106
    • /
    • 2007
  • While the effort has been made in recycling the FRP (Fiber Reinforced Plastic) used for the medium-to-small size ships, researchers try to find out the methods more favorable for the environments and more value-added. In respect to the fact that the FRP consists of two types of layers, roving and mat, differentiated by the 2-dimensional structure, our group was able to separate the layers of FRP instead of grinding it. The roving cloth was cut to the long glass fibers (about 50 mm long; calling it 'F-fiber' afterwards). F-fiber showed increasing tensile strength and chemical-resistance possibly due to the remained resin (about 25% by weight). In this experiment fiber-reinforced mortars are made of the F-fiber as a recycling method of FRP. The mortar containing 2% (v/v) F-fiber results in 34.6% increment of bending strength from the standard after 28 day curing. The resulting strength is similar to that of the mortar with imported polyvinyl fiber P-54. These results imply that F-fiber can be applied to the 'fiber reinforced mortar' and furthermore may be a substitute for the imported fibers.

  • PDF

Characterization and Evaluation of Worker s Exposure to Airborne Glass Fibers in Glass Wool Manufacturing Industry (유리섬유 단열재 제조업 근로자의 공기중 유리섬유 폭로 특성 및 평가 방법에 관한 연구)

  • 신용철;이광용;박천재;이나루;정동인;오세민
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.2
    • /
    • pp.43-57
    • /
    • 1996
  • To characterize worker's exposure to glass fibers, to find the correlation between airborne total dust concentrations and fiber concentrations and to recommend an appropriate evaluation method for worker's exposure to fibrous dusts in glass wool industry, we carried out this study. Average respirable fiber levels at five factories were 0.013-0.056 f/cc, and fairly below the OSHA PEL, 1 f/cc. A factory showed the lowest airborne fiber level, 0.013 f/cc, which was different significantly from those of other factories of which average fiber concentration was 0.046 f/cc. The cutting and grinding operations of insulation products resulted in higher airborne fiber cocentrations than any other processes(p<0.05). To characterize airborne fiber dimension, fiber length and diamter were determined using phase contrast microscope. The geometric means of airborne fiber lengths were $42-105 \mu m$. One factory had airborne fibers whose length distribution(GM = $105 \mu m$) was different from those of other factories(GM = $42-50 \mu m$). The percentages of respirable fibers less thinner than 3 gm were 38.9-90.9% at four factories, and two factories of them had the higher percentages than others. The findings explain for variation of airborne fiber diameters between factories. On the other hand, between the processes were the difference of fiber-length distributions observed. The cutting and grinding operations showed shorter fiber-length distributions than the fiber forming one. However, fiber-diameter distributions or respirable fiber contents were similar in all processes. The airborne fiber concentrations and the dust concentrations had relatively weak correlation(r=0.25), thus number of fibers couldn't be expected reliably from dust amount. Fiber count is appropriate for assessing accurate exposures and health effects caused by fibrous dusts including glass fibers. Ministry of Labor have established occupational exposure limit to glass fibers as nuisiance dust, but should establish it on the basis of respirable fiber concentration to provide adequate protection for worker's health

  • PDF

ON A FIBER SPACE WITH CONNECTED FIBERS

  • Shin, Dong-Kwan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.625-627
    • /
    • 1998
  • Let f: S$\rightarrow$ C be a fiber space with connected fibers. We may have an information about a surface S from the fiber space structure. The result we have is ${\chi}({\mathcal O}_C){\chi}({\mathcal O}_F){\leq}{\chi}({\mathcal O}_S)$.

  • PDF