• 제목/요약/키워드: Expansive mortar

검색결과 45건 처리시간 0.024초

콘크리트용 KEDO 골재의 암석기재시험 (ASTM C295) (Petrographic Study(ASTM C 295) on the KEDO Concrete Aggregates)

  • 정지곤;김경수;이철우
    • 지질공학
    • /
    • 제17권4호
    • /
    • pp.589-599
    • /
    • 2007
  • 본 연구는 한반도에너지개발기구(KEDO) 골재에 대하여 ASTM C 295를 적용, 암석기재학적 시험을 통하여 콘크리트를 위한 골재의 적합성을 타진하는데 목적이 있다. 시험에는 천연의 자갈골재와 모래골재를 재료로 하여 편광현미경, 실체현미경, XRD를 주로 사용하였다. KEDO의 천연골재 중 자갈골재의 23%, 모래골재의 5.1%가 화학적으로 불안정한 골재에 해당된다. 따라서 콘크리트용 KEDO 골재의 선정에 있어서 가능한 한 편마암과 같은 고변성 작용을 받은 변성암, 산성화산암, 엽리가 발달된 암석, 그리고 모르타르 봉 시험에서 불량한 골재로 확인된 암석은 피하여야 한다. 본 연구결과, 콘크리트용 KEDO 골재의 적합성 여부를 판단하기 위해서는 추가적인 화학적 시험과 모르타르 봉 시험을 거친 후 종합적으로 그 사용 여부를 결정함이 바람직하다.

The use of artificial neural networks in predicting ASR of concrete containing nano-silica

  • Tabatabaei, Ramin;Sanjaria, Hamid Reza;Shamsadini, Mohsen
    • Computers and Concrete
    • /
    • 제13권6호
    • /
    • pp.739-748
    • /
    • 2014
  • In this article, by using experimental studies and artificial neural network has been tried to investigate the use of nano-silica as concrete admixture to reduce alkali-silica reaction. If there are reactive aggregates and alkali of cement with enough moisture in concrete, a gel will be formed. Then with high reactivity between alkali of cement and existence of silica in aggregates, this gel will expand by absorption of water, and causes expansive pressure and cracks be formed. At the time passes, this gel will reduce both durability and strength of the concrete. By reducing the size of silicate to nano, specific surface area of particles and number of atoms on the surface will be increased, which causes more pozzolanic activity of them. Nano-silica can react with calcium hydroxide ($Ca(OH)_2$) and produces C-S-H gel. In this study, accelerated mortar bar specimens according to ASTM C 1260 and ASTM C 1567, with different mix proportions were prepared using aggregates of Kerman, such as: none admixture and plasticizer, different proportions of nano-silica separately. By opening the moulds after 24 hour and curing in water at $80^{\circ}C$ for 24 hour, then curing in (1N NaOH) at $80^{\circ}C$ for 14 days, length expansion of mortar bars were measured and compared. It was noted that, the lowest length expansion of a specimens shows the best proportion of admixture based on alkali-silica reactivity. Then, prediction of alkali-silica reaction of concrete has been investigated by using artificial neural network. In this study the backpropagation network has been used and compared with different algorithms to train network. Finally, the best amount of nano silica for adding to mix proportion, also the best algorithm and number of neurons in hidden layer of artificial neural network have been offered.

Quick Judgments of Properties of Fine Aggregate to Use the Electric Arc Furnace Oxidizing Slag

  • Lee, Hyung-Min;Lee, Han-Seung;Choi, Jae-Seok
    • 한국건축시공학회지
    • /
    • 제11권5호
    • /
    • pp.442-451
    • /
    • 2011
  • Blast furnace slag is recycled as a high value-added material, while steel slag is difficult to recycle or is recycled as a low-grade filler material due to its expansive characteristics. Its property is caused by the high content of free lime and instable steel oxides. Recently, an innovative and rapid cooling method for melting steel slag has been developed in Korea, which reduces free lime content to a minimum level and increases the stability of steel oxides. However, researches on the long-term stability are not sufficient so far. Therefore, this study, focusing on the electric arc furnace oxidizing slag in the steel slag, aims to investigate the properties of the steel slag aggregate, its long-term volume stability and the engineering strength of mortar, and using it as a fine aggregate. This study result indicated that it was possible for it to be used as concrete aggregate because the volume change of the steel slag appeared to be stable.

Shrinkage and crack characteristics of filling materials for precast member joint under various restraint conditions

  • Lim, Dong-Kyu;Choi, Myoung-Sung
    • Advances in concrete construction
    • /
    • 제14권2호
    • /
    • pp.139-151
    • /
    • 2022
  • Filling materials poured into precast member joint are subjected to restraint stress by the precast member and joint reinforcement. The induced stress will likely cause cracks at early ages and performance degradation of the entire structure. To prevent these issues and design reasonable joints, it is very important to analyze and evaluate the restrained shrinkage cracks of filling materials at various restraint conditions. In this study, a new time zero-that defines the shrinkage development time of a filling material-is proposed to calculate the accurate amount of shrinkage. The tensile stresses and strengths at different ages were compared through the ring test (AASHTO PP34) to evaluate the crack potential of the restrained filling materials at various restraint conditions. The mixture which contained an expansive additive and a shrinkage reducing agent exhibited high resistance to shrinkage cracking owing to the high-drying shrinkage compensation effect. The high-performance, fiber-reinforced cement composite, and ultra-high-performance, fiber-reinforced cement composite yielded very high resistance to shrinkage and cracking owing to the pull-out property of steel fibers. To this end, multiple nonlinear regression analyses were conducted based on the test results. Accordingly, a modified tensile stress equation that considered both the geometric shape of the specimen and the intrinsic properties of the material is proposed.

균열 자기치유 재료 혼입 모르타르의 투수성능 평가 (Water Permeability Performance Evaluation of Mortar Containing Crack Self-healing Mineral Admixtures)

  • 이웅종;황지순;안상욱;이광명
    • 한국건설순환자원학회논문집
    • /
    • 제4권4호
    • /
    • pp.463-469
    • /
    • 2016
  • 본 연구에서는 팽창재-팽윤재-결정성장 촉진제로 구성된 자기치유 재료(SH-PO-0)와 칼슘이온 용출을 촉진하는 인산염계 혼화재(PO)를 첨가한 자기치유 재료(SH-PO-5, 15, 30)를 사용한 모르타르의 압축강도 및 투수성능을 평가하였다. SH-PO-0는 OPC 대비 28일 압축강도는 9% 감소하였지만, 투수량 감소비는 OPC 대비 현저히 낮아, 자기치유 재료의 유효성을 확인하였다. PO의 첨가량이 증가함에 따라 압축강도는 감소하고, 초기재령에서 투수성능은 개선되는 경향을 나타내었고, 적정 PO 치환율은 15% 수준이었다. SH-PO-15는 SH-PO-0 대비 28일 압축강도는 8% 이내에서 감소하였고, 초기 재령에서 투수성능이 더욱 개선되었으나, 장기재령까지 이어지지는 않았다. SEM-EDS분석에 의해 SH-PO-15의 칼슘 이온량이 더 많이 고정화되어 있음을 확인하였다.