• 제목/요약/키워드: Exhaust Pipe

검색결과 228건 처리시간 0.025초

EXHAUST GAS HEAT RECOVERY SYSTEM FOR PLANT BED HEATING IN GREENHOUSE PRODUCTION

  • Kim, Y.J.;Ryou, Y.S.;Rhee, K.J.;Kang, G.C.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.III
    • /
    • pp.639-646
    • /
    • 2000
  • Hot air heater with light oil combustion is the most common heater for greenhouse heating in the winter season in Korea. However, since the heat efficiency of the heater is about 80%, considerable unused heat in the form of exhaust gas heat discharges to atmosphere. In order to capture this exhaust gas heat a heat recovery system for plant bed heating in the greenhouse was built and tested in the hot air heating system of greenhouse. The system consists of a heat exchanger made of copper pipes, ${\phi}\;12.7{\times}0.7t$ located inside the rectangular column of $330{\times}330{\times}900mm$, a water circulation pump, circulation plastic pipe and a water tame The total heat exchanger area is $1.5m^2$, calculated considering the heat exchange amount between flue gas and water circulated in the copper pipes. The system was attached to the exhaust gas path. The heat recovery system was designed as to even recapture the latent heat of flue gas when exposing to low temperature water in the heat exchanger. According to performance test it can recover 45,200 to 51,000kJ/hr depending on the water circulation rates of 330 to $690{\ell}$/hr from the waste heat discharged. The exhaust gas temperature left from the heat exchanger dropped to $100^{circ}C$ from $270^{circ}C$ by the heat exchange between the water and the flue gas, while water gained the difference and temperature increased to $38^{circ}C$ from $21^{circ}C$ at the water flow rate of $690{\ell}$/hr. And, the condensed water amount varies from 16 to $43m{\ell}$ at the same water circulation rates. This condensing heat recovery system can reduce boiler fuel consumption amount in a day by 34% according to the feasibility study of the actual mimitomato greenhouse. No combustion load was observed in the hot air heater.

  • PDF

분리형 히트파이프의 저발열량 연료가스 예열시스템에 대한 적용연구 (Application of a Large Scale Heat Pipe System to Preheating the Fuel Gas of Low Heating Value)

  • 박흥수;유갑종;이진호;이용국
    • 대한기계학회논문집B
    • /
    • 제23권9호
    • /
    • pp.1085-1097
    • /
    • 1999
  • A separate heat pipe system capacity of 3,700kW has been developed and applied to preheating the blast furnace gas for recovery of the waste heat from boiler. The system is designed to preheat the blast furnace gas up to $126^{\circ}C$ by using tho boiler exhaust gas of which temperature is $180^{\circ}C{\sim}220^{\circ}C$. The arrangement of the fin tubes as well as the shape of the fin has been carefully determined to minimize the fouling problems. The heat pipe system was found to be stable in circulation of the working fluid and the range of the temperature variation of the preheated blast furnace gas was within $10^{\circ}C$. It was proved through a long-term test that the selected tube arrangement and the shape of the fins are proper to prevent the fouling problems and that the pay-back period of the system Is within one year.

저온기 육용계사의 적정 환기체계 구명

  • 이덕수;나재천;최희철;송준익;이상진;김형호
    • 한국가금학회:학술대회논문집
    • /
    • 한국가금학회 2002년도 가을 학술발표논문집
    • /
    • pp.108-109
    • /
    • 2002
  • 환기체계별 내부환경 조사에서 입기관 입기 $\longrightarrow$ 강제 굴뚝배기방식이 NH$_3$ 농도 4.2ppm으로 윈치창 입기방식보다 유리하였고, 사육 성적에서는 입기관 입기 $\longrightarrow$ 강제 굴뚝배기방식이 일당 증체량 45.6g, 사료요구율 1.71, 수당 연료비 35.4원으로 다른 환기방식보다 우수하였으며, 입기관 길이별 풍속은 4m 가 1m 입기관보다 공기가 고루 퍼져가는 경향이었고 지점별 계사내 온도는 입기관 입기방식이 5.9 ~ 7.7$^{\circ}C$(평균 7.$0^{\circ}C$) 높아 연료절감 효과가 기대되었다.

  • PDF

터널 배수공의 재질에 따른 스케일 부착 특성에 관한 연구 (Bond Characteristics of Scale According to the Drainage Pipe's Material in Tunnel)

  • 주익찬;남승혁;백승인;정혁상;천병식
    • 한국지반환경공학회 논문집
    • /
    • 제12권11호
    • /
    • pp.51-57
    • /
    • 2011
  • 지하수에 의하여 터널 내로 유입된 수산화칼슘($Ca(OH)_{2}$)이 이산화탄소($CO_{2}$)와 차량의 배기가스($SO_{3}$) 등과 반응하여 그 반응물이 터널의 배수공 내에 침전되어 배수공 클로깅 현상이 발생하였다. 대부분의 반응물은 화학분석 결과 칼사이트의 탄산칼슘 ($CaCO_{3}$)인 것으로 나타났다. 본 연구에서는 일반적으로 터널의 배수공으로 사용되는 PVC관과 새로운 재질의 배수공인 테프론 코팅강관, 실리콘오일 코팅관, 아크릴관에 CaO 수용액과 터널 배수공 유출수를 흘려보내어 스케일 부착형태를 분석함으로써 배수공의 재질이 스케일 부착에 미치는 영향을 연구하였다. 그 결과 PVC관에서 가장 많은 양의 스케일이 생성되었고 아크릴관, 실리콘오일 코팅관, 테프론 코팅강관의 순으로 관 표면에 스케일이 적게 부착되었다. 그러나 장기적 시험결과 테프론 코팅강관의 경우 관표면이 터널 유출수에 포함되어 있는 토사로 인하여 손상되어 코팅재의 탈락, 강관의 부식 등이 발생하여 내구성에 문제가 있었다.

자동차 배기폐열 회수용 열전발전 시스템의 성능에 관한 연구 (Experimental Study on Thermoelectric Generator Performance for Waste Heat Recovery in Vehicles)

  • 이대웅
    • 설비공학논문집
    • /
    • 제26권6호
    • /
    • pp.287-293
    • /
    • 2014
  • Internal combustion engines release 30~40% of the energy from fossil fuels into the atmosphere in the form of exhaust gases. By utilizing this waste heat, plenty of energy can be conserved in the auto industry. Thermoelectric generation is one way of transforming the energy from engine's exhaust gases into electricity in a vehicle. The thermoelectric generators located on the exhaust pipe have been developed for vehicle applications. Different experiments with thermoelectric generators have been conducted under various test conditions as following examples: hot gas temperature, hot gas mass flow rate, coolant temperature, and coolant mass flow rate. The experimental results have shown that the generated electrical power increases significantly with the temperature difference between the hot and the cold side of the thermoelectric generator and the gas flow rate of the hot-side heat exchanger. In addition, the gas temperature of the hot-side heat exchanger decreases with the length of the thermoelectric generator, especially at a low gas flow rate.

Moving Mesh를 이용한 PCV 밸브의 내부유동 수치해석 (A numerical analysis for internal fluid flow of a PCV valve by using moving mesh)

  • 이종훈;최윤환;이연원
    • 동력기계공학회지
    • /
    • 제9권2호
    • /
    • pp.40-44
    • /
    • 2005
  • A great deal of exhaust gas inside a combustion room goes out through exhaust pipe but residual gas, is called "Blowby gas", enters the crankcase through a small gap between the piston and the cylinder wall. Here, if the crankcase isn't vented, this causes many bad effects such as lubricant oil contamination, corrosion by that and crankcase explosion by rising pressure. So, most automobiles are constituted with a PCV (Positive Crankcase Ventilation) system to prevent previous problems. PCV valve is the most important part in this ventilation system. When companies are manufacturing new engines, engineers are designing it depending on their experiments than theoretical knowledge. Mush efforts and times are needed for new development. This study will show quantitative results to increase the possibilities of reduction of developing time.

  • PDF

터보차져 NVH 시험장치 (The Turbocharger Cold Test Bench for NVH test)

  • 김형진;최상보;김재헌;강구태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.913-917
    • /
    • 2007
  • The turbocharger for a vehicle is consisting of a centrifugal compressor and turbine. These compressor and turbine are vibrating and emitting noises through the T/C body, exhaust system (Catalyst, Bellows, Pipe, etc) and Intake system (Hoses, Intercooler pipes, Intercooler) as rotating. A turbocharger cold test bench is constructed to reduce these noises, especially for the purpose of realizing transient operating environment and oil temperature control to simulate the vehicle operating characteristics with intake system and exhaust system. This research laid the groundwork to develop a lower noise level T/C through understanding the mechanism of the noise source of T/C.

  • PDF

Moving Mesh를 이용한 PCV 밸브의 내부유동 수치 해석 (A numerical analysis for internal fluid flow of a PCV valve by using moving mesh)

  • 이종훈;리리;김영국;최윤환;이연원
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 추계 학술대회논문집
    • /
    • pp.19-24
    • /
    • 2004
  • A great deal of exhaust gas inside a combustion room goes out through exhaust pipe but residual gas, is called 'Blow by gas', enters the crankcase through a small gap between the piston and the cylinder wall. Here, if the crankcase isn't vented, this causes many bad effects such as lubricant oil contamination, corrosion by that and crankcase explosion by rising pressure. So most automobiles are constituted with a PCV(Positive Crankcase Ventilation) system to prevent previous problems. PCV valve is the most important part in this ventilation system. When companies are manufacturing new cases, engineers are designing it depending on their experiments than theoretical knowledges. Much efforts and times are needed for new development. This study will show quantitative results to increase the possibilities.

  • PDF

디이젤기관에 있어서 매타놀의 사용 (The Use of methanol in Diesel Engines)

  • 유병철
    • 대한기계학회논문집
    • /
    • 제3권1호
    • /
    • pp.1-9
    • /
    • 1979
  • Methanol was examined as supplemental fuel for open chamber type and pre-combustion chamber type diesel engine. Pre-determined quantities of diesel oil were injected as ordinary diesel engines and methanol was added at inlet pipe using venturi, nozzel and and float chamber for the rest of the charge. In this mode of operation, addition of methanol reduced inlet and exhaust temperature. Inlet air quantities were essentially unchanged in spite of lower inlet temperature. Exhaust smoke was significantly reduced At light load when both diesel oil and methanol were introduced with small quantities, specific heat consumption was considerably increased. However, with the increase of the quantity of methanol or diesel oil, specific heat consumption was improved. With sufficient quantities of diesel oil enough to produce the power above 3/4 load, addition of methanol showed better thermal economy.

원추 환형링이 촉매변환기내의 유동분포에 미치는 영향 (An Effect of Cone Type Circular Ring on the Flow Distribution in Catalytic Converter)

  • 이철구;이은호;유재석;목재균;황석렬
    • 한국자동차공학회논문집
    • /
    • 제9권3호
    • /
    • pp.76-83
    • /
    • 2001
  • An experimental investigation has been performed on the steady flow in exhaust system. When individual flow coming from exhaust manifold entered UCC, the inlet conditions at entry to the diffuser in UCC were affected by the upstream pipe and manifold works. But those effects of the inlet condition on flow through monolith are negligible because the flows are concentrated on the center of monolith regardless of inlet flow distribution. To improve the flow distribution, we installed the cone type circular ring in diffuser of UCC. This led to increasement of flow uniformity, but there was minor increment of pressure drop.

  • PDF