• Title/Summary/Keyword: Excitation Optimization

Search Result 138, Processing Time 0.027 seconds

Multibeam Reflector Antenna for Ka-Band Communication Satellite (Ka 대역 통신위성용 다중 빔 배열 급전 반사판 안테나)

  • Yun, So-Hyeun;Uhm, Man-Seok;Choi, Jang-Sup;Yom, In-Bok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.6
    • /
    • pp.756-759
    • /
    • 2012
  • This paper presents the multibeam service coverage of GEO(Geostationary Orbit) satellite and the practical antenna scheme scenarios to provide the universal communication services on the Korean peninsula. The proposed antenna systems consist of the simplest scheme and feed network so that they can be mounted on satellites. The feed networks are effectively organized according to the frequency and polarization plan. Despite simple structure, all scenarios meet the electrical performance by the optimization of feed allocation and feed excitation.

Real-time implementation of the 2.4kbps EHSX Speech Coder Using a $TMS320C6701^TM$ DSPCore ($TMS320C6701^TM$을 이용한 2.4kbps EHSX 음성 부호화기의 실시간 구현)

  • 양용호;이인성;권오주
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7C
    • /
    • pp.962-970
    • /
    • 2004
  • This paper presents an efficient implementation of the 2.4 kbps EHSX(Enhanced Harmonic Stochastic Excitation) speech coder on a TMS320C6701$^{TM}$ floating-point digital signal processor. The EHSX speech codec is based on a harmonic and CELP(Code Excited Linear Prediction) modeling of the excitation signal respectively according to the frame characteristic such as a voiced speech and an unvoiced speech. In this paper, we represent the optimization methods to reduce the complexity for real-time implementation. The complexity in the filtering of a CELP algorithm that is the main part for the EHSX algorithm complexity can be reduced by converting program using floating-point variable to program using fixed-point variable. We also present the efficient optimization methods including the code allocation considering a DSP architecture and the low complexity algorithm of harmonic/pitch search in encoder part. Finally, we obtained the subjective quality of MOS 3.28 from speech quality test using the PESQ(perceptual evaluation of speech quality), ITU-T Recommendation P.862 and could get a goal of realtime operation of the EHSX codec.c.

Ship Vibration Control Utilizing the Phase Difference Identification of Two Excitation Components with the Same Frequency Generated by Diesel Engine and Propeller (동일 주파수 성분의 디젤엔진과 프로펠러 기진력 위상차 규명을 이용한 선박 진동 제어)

  • Seong, Hyemin;Kim, Kisun;Joo, Wonho;Cho, Daeseung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.3
    • /
    • pp.160-167
    • /
    • 2020
  • A two-stroke diesel engine and a propeller normally adopted in large merchant ships are regarded as major ship vibration sources. They are directly connected and generate various excitation components proportional to the rotating speed of diesel engine. Among the components, the magnitude of two excitation components with the same frequency generated by both engine and propeller can be compensated by the adjustment of their phase difference. It can be done by the optimization of propeller assembly angle but requires a number of burdensome trials to find the optimal angle. In this paper, the efficient estimation method to determine optimal propeller assembly angle is proposed. Its application requires the axial vibration measurement in sea trial and the numerical vibration analysis for propulsion shafting which can be substituted by additional vibration measurement after one-trial modification of propeller assembly angle. In order to verify the validity of the proposed method, the phase difference between two fifth order excitation components generated by both diesel engine and propeller of a real ship is calculated by the finite element analysis and its result is indirectly validated by the comparison of axial vibration responses at intermediate shaft obtained by the numerical analysis and the measurement in sea trial. Finally, it is numerically confirmed that axial vibration response at intermediate shaft at a resonant speed can be decreased more than 87 % if the optimal propeller assembly angle determined by the proposed method is applied.

Dynamic Response Optimization for Vibration Reduction of the Fork-Lift Truck (지게차 진동저감을 위한 최적설계)

  • 이동일;최형우;박근배;이승구
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.155-160
    • /
    • 1996
  • The vibration analysis of the automobiles has been a good subject for the engineers seeking solutions for more comfortable life. In the area of industrial vehicles, however, the seriousness of the vibration annoyance has not been considered so much. In this paper, a finite element model was built which was good for the low-frequency system(of fork-lift truck), and a forced vibration analysis was obtained for the component of 2n of harmonic orders from engine excitation to this model. Finally, a design optimization upon dynamic responses was made to minimize the vibration acceleration level at selected points representing the vibration level of the whole system.

  • PDF

Vibration Reduction of Forklift Truck Using Optimization of Engine Mount Layout (마운트 배치 최적화를 통한 지게차 엔진 진동 저감)

  • Kim, Younghyun;Kim, Kyutae;Lee, Wontae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.2
    • /
    • pp.102-107
    • /
    • 2014
  • The engine excitation forces are considered as major vibration source for the forklift truck, especially in small class. Even though the current engine mounting system designs are acceptable for vibration isolation, the performance of the engine mounting system is still required for the tendency of light weight, higher power and driver's higher vibration requirement. In this paper vibration reduction technique of forklift engine which is supported on rubber mounts is presented. Based on the dynamic model of resilient engine mounting system, design evaluation program is established. The design optimization technique and evaluation method of system properties are discussed. Effects of optimal design are validated through comparison with test results.

Parameters identification of fractional models of viscoelastic dampers and fluids

  • Lewandowski, Roman;Slowik, Mieczyslaw;Przychodzki, Maciej
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.181-193
    • /
    • 2017
  • An identification method for determination of the parameters of the rheological models of dampers made of viscoelastic material is presented. The models have two, three or four parameters and the model equations of motion contain derivatives of the fractional order. The results of dynamical experiments are approximated using the trigonometric function in the first part of the procedure while the model parameters are determined as the solution to an appropriately defined optimization problem. The particle swarm optimization method is used to solve the optimization problem. The validity and effectiveness of the suggested identification method have been tested using artificial data and a set of real experimental data describing the dynamic behavior of damper and a fluid frequently used in dampers. The influence of a range of excitation frequencies used in experiments on results of identification is also discussed.

Vibration reduction of forklift truck using optimization of engine mount layout (마운트 배치 최적화를 통한 지게차 엔진 진동 저감)

  • Kim, Younghyun;Kim, Kyutae;Lee, Wontae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.787-791
    • /
    • 2013
  • The engine excitation forces are considered as major vibration source for the forklift truck, especially in small class. Even though the current engine mounting system designs are acceptable for vibration isolation, the performance of the engine mounting system is still required for the tendency of light weight, higher power and driver's higher vibration requirement. In this paper vibration reduction technique of forklift engine which is supported on rubber mounts is presented. Based on the dynamic model of resilient engine mounting system, design evaluation program is established. The design optimization technique and evaluation method of system properties are discussed. Effects of optimal design are validated through comparison with test results.

  • PDF

Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization

  • Tejani, Ghanshyam G.;Savsani, Vimal J.;Patel, Vivek K.
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.226-249
    • /
    • 2016
  • The symbiotic organisms search (SOS) algorithm is an effective metaheuristic developed in 2014, which mimics the symbiotic relationship among the living beings, such as mutualism, commensalism, and parasitism, to survive in the ecosystem. In this study, three modified versions of the SOS algorithm are proposed by introducing adaptive benefit factors in the basic SOS algorithm to improve its efficiency. The basic SOS algorithm only considers benefit factors, whereas the proposed variants of the SOS algorithm, consider effective combinations of adaptive benefit factors and benefit factors to study their competence to lay down a good balance between exploration and exploitation of the search space. The proposed algorithms are tested to suit its applications to the engineering structures subjected to dynamic excitation, which may lead to undesirable vibrations. Structure optimization problems become more challenging if the shape and size variables are taken into account along with the frequency. To check the feasibility and effectiveness of the proposed algorithms, six different planar and space trusses are subjected to experimental analysis. The results obtained using the proposed methods are compared with those obtained using other optimization methods well established in the literature. The results reveal that the adaptive SOS algorithm is more reliable and efficient than the basic SOS algorithm and other state-of-the-art algorithms.

Friction tuned mass damper optimization for structure under harmonic force excitation

  • Nasr, Aymen;Mrad, Charfeddine;Nasri, Rachid
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.761-769
    • /
    • 2018
  • In this work, an optimization method of Friction Tuned Mass Damper (FTMD) parameters is presented. Friction tuned mass dampers (FTMD) are attached to mechanical structures to reduce their vibrations with dissipating the vibratory energy through friction between both bodies. In order to exploit the performances of FTMD, the determination of the optimum parameters is recommended. However, the presence of Coulomb's friction force requires the resolution of a non-linear stick-slip problem. First, this work aims at determining the responses of the vibratory system. The responses of the main mass and of the FTMD are determined analytically in the sticking and sliding phase using the equivalent damping method. Second, this work aims to optimize the FTMD parameters; the friction coefficient and the tuned frequency. The optimization formulation based on the Ricciardelli and Vickery method at the resonance frequencies, this method is reformulated for a system with a viscous damping. The inverse problem of finding the FTMD parameters given the magnitude of the force and the maximum acceptable displacement of the primary system is also considered; the optimization of parameters leads to conclude on the favorable FTMD giving significant vibration decrease, and to advance design recommendations.

Robust Design Optimization of the Vehicle Ride Comfort Considering Variation of the Design Parameters (설계변수의 산포를 고려한 차량 승차감의 강건최적설계)

  • Song, Pil-Gon;Spiriyagin, Maksym;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1217-1223
    • /
    • 2008
  • Vehicle vibration mostly originates from the road excitation and causes discomfort, fatigue and even injury to a driver. Vehicle ride comfort is one of the most important performance indices to achieve a high-quality vehicle design. Since design parameter variations inevitably result in the vehicle ride comfort variance, the variance characteristics should be analyzed in the early design stage of the vehicle. The vehicle ride comfort is often defined by an index which employs a weighted RMS value of the acceleration PSD of a seat position. The design solution is obtained through two steps in this study. An optimization problem to obtain a minimum ride comfort index is solved first. Then another optimization problem to obtain minimum variance of the ride comfort index is solved. For the optimization problems, the equations of motion and the sensitivity equations are derived basing on a 5-DOF vehicle model. The numerical results show that an optimal solution for the minimum ride comfort is not necessarily same as that of the minimum variance of the ride comfort.