DOI QR코드

DOI QR Code

Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization

  • Tejani, Ghanshyam G. (Pandit Deendayal Petroleum University) ;
  • Savsani, Vimal J. (Pandit Deendayal Petroleum University) ;
  • Patel, Vivek K. (Pandit Deendayal Petroleum University)
  • Received : 2015.12.09
  • Accepted : 2016.02.15
  • Published : 2016.07.01

Abstract

The symbiotic organisms search (SOS) algorithm is an effective metaheuristic developed in 2014, which mimics the symbiotic relationship among the living beings, such as mutualism, commensalism, and parasitism, to survive in the ecosystem. In this study, three modified versions of the SOS algorithm are proposed by introducing adaptive benefit factors in the basic SOS algorithm to improve its efficiency. The basic SOS algorithm only considers benefit factors, whereas the proposed variants of the SOS algorithm, consider effective combinations of adaptive benefit factors and benefit factors to study their competence to lay down a good balance between exploration and exploitation of the search space. The proposed algorithms are tested to suit its applications to the engineering structures subjected to dynamic excitation, which may lead to undesirable vibrations. Structure optimization problems become more challenging if the shape and size variables are taken into account along with the frequency. To check the feasibility and effectiveness of the proposed algorithms, six different planar and space trusses are subjected to experimental analysis. The results obtained using the proposed methods are compared with those obtained using other optimization methods well established in the literature. The results reveal that the adaptive SOS algorithm is more reliable and efficient than the basic SOS algorithm and other state-of-the-art algorithms.

Keywords

References

  1. Amir O, Sigmund O, Lazarov BS, Schevenels M. Efficient reanalysis techniques for robust topology optimization. Comput. Methods Appl. Mech. Eng. 2012;245-246:217-31. http://dx.doi.org/10.1016/j.cma.2012.07.008.
  2. Baykasoglu A, Ozsoydan FB. Adaptive firefly algorithm with chaos for mechanical design optimization problems. Appl. Soft Comput. 2015;36:152-64. http://dx.doi.org/10.1016/j.asoc.2015.06.056.
  3. Beghini LL, Beghini A, Katz N, Baker WF, Paulino GH. Connecting architecture and engineering through structural topology optimization. Eng. Struct. 2014;59:716-26. http://dx.doi.org/10.1016/j.engstruct.2013.10.032.
  4. Bellagamba L, Yang TY. Minimum-mass truss structures with constraints on fundamental natural frequency. AIAA J. 1981;19(11)1452-8. http://dx.doi.org/10.2514/3.7875.
  5. Bingul Z. Adaptive genetic algorithms applied to dynamic multiobjective problems. Appl. Soft Comput. 2007;7(3)791-9. http://dx.doi.org/10.1016/j.asoc.2006.03.001.
  6. Cheng M, Prayogo D, Tran D. Optimizing multiple-resources leveling in multiple projects using discrete symbiotic organisms search. J. Comput. Civil Eng. 2015. http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000512.
  7. Cheng MY, Prayogo D. Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput. Struct. 2014;139:98-112. http://dx.doi.org/10.1016/j.compstruc.2014.03.007.
  8. Christensen PW, Klarbring A. An Introduction to Structural Optimization (Solid Mechanics and Its Applications). Netherlands:Springer; http://dx.doi.org/10.1007/978-1-4020-8666-3.
  9. Dai L, Guan F, Guest JK. Structural optimization and model fabrication of a double-ring deployable antenna truss. Acta Astronaut. 2014;94(2)843-51. http://dx.doi.org/10.1016/j.actaastro.2013.10.002.
  10. Dai X, Yuan X, Zhang Z. A self-adaptive multi-objective harmony search algorithm based on harmony memory variance. Appl. Soft Comput. 2015;35:541-57. http://dx.doi.org/10.1016/j.asoc.2015.06.027.
  11. Ferreira AJ. MATLAB Codes for Finite Element Analysis: Solids and Structures, 157. Netherlands: Springer; http://dx.doi.org/10.1007/978-1-4020-9200-8.
  12. GOkdag H, Yildiz AR. Structural damage detection using modal parameters and particle swarm optimization. Mater. Test. 2012;54:416-20. http://dx.doi.org/10.3139/120.110346.
  13. Gomes HM. Truss optimization with dynamic constraints using a particle swarm algorithm. Exp. Syst. Appl. 2011;38(1)957-68 http://dx.doi.org/.10.1016/j.eswa.2010.07.086.
  14. Grandhi RV, Venkayya VB. Structural optimization with frequency constraints. AIAA J. 1988;26(7)858-66. http://dx.doi.org/10.2514/3.9979.
  15. Jalalpour M, GuestJ K, Igusa T. Reliability-based topology optimization of trusses with stochastic stiffness. Struct. Saf. 2013;43:41-9. http://dx.doi.org/10.1016/j.strusafe.2013.02.003.
  16. Jin P, De-yu W. Topology optimization of truss structure with fundamental frequency and frequency domain dynamic response constraints. Acta Mech Solida Sinica. The Chin. Soc. Theor. Appl. Mech. 2006;19(3)231-40. http://dx.doi.org/10.1007/s10338-006-0628-2.
  17. Kaveh A, Mahdavi VR. Colliding-bodies optimization for truss optimization with multiple frequency constraints. J. Comput. Civil Eng. 2014;11:1-10. http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.
  18. Kaveh A, Mahdavi VR. Two-dimensional colliding bodies algorithm for optimal design of truss structures. Adv. Eng. Softw. 2015;83:70-9. http://dx.doi.org/10.1016/j.advengsoft.2015.01.007.
  19. Kaveh A, Zolghadr A. Democratic PSO for truss layout and size optimization with frequency constraints. Comput. Struct. 2014;130:10-21. http://dx.doi.org/10.1016/j.compstruc.2013.09.002.
  20. Kaveh A, Zolghadr A. Comparison of nine meta-heuristic algorithms for optimal design of truss structures with frequency constraints. Adv. Eng. Softw. 2014;76:9-30. http://dx.doi.org/10.1016/j.advengsoft.2014.05.012.
  21. Kaveh A, Zolghadr A. Shape and size optimization of truss structures with frequency constraints using enhanced charged system search algorithm. Asian J. Civil Eng. 2011;12(4)487-509.
  22. Kaveh A, Zolghadr A. Topology optimization of trusses considering static and dynamic constraints using the CSS. Appl. Soft Comput. 2013;13(5)2727-34. http://dx.doi.org/10.1016/j.asoc.2012.11.014.
  23. Kaveh A, Zolghadr A. Truss optimization with natural frequency constraints using a hybridized CSS-BBBC algorithm with trap recognition capability. Comput. Struct. 2012;102-103:14-27. http://dx.doi.org/10.1016/j.compstruc.2012.03.016.
  24. Khatibinia M, Naseralavi SS. Truss optimization on shape and sizing with frequency constraints based on orthogonal multi-gravitational search algor-rithm. J. Soundvibr. 2014;333(24)6349-69. http://dx.doi.org/10.1016/j.jsv.2014.07.027.
  25. Kiani M, Yildiz AR. A comparative study of non-traditional methods for vehicle crashworthiness and NVH optimization. Archives of Computational Methodsin Engineering. Netherlands: Springer; 2015. p. 1-12. http://dx.doi.org/10.1007/s11831-015-9155-y.
  26. Li X, Yin M. Modified cuckoo search algorithm with self adaptive parameter method. Inform. Sci. 2015;298:80-97. http://dx.doi.org/10.1016/j.ins.2014.11.042.
  27. LinJ H, Che WY, Yu YS. Structural optimization on geometrical configuration and element sizing with static and dynamic constraints. Comput. Stru. 1982;15:507-15. http://dx.doi.org/10.1016/0045-7949(82)90002-5.
  28. Maute K, Frangopol DM. Reliability-based design of MEMS mechanisms by topology optimization. Comput. Struct. 2003;81(8-11)813-24. http://dx.doi.org/10.1016/S0045-7949(03)00008-7.
  29. Miguel LFF, Miguel LFF. Shape and size optimization of truss structures considering dynamic constraints through modern metaheuristic algorithms. Exp. Syst. Appli. 2012;39(10)9458-67. http://dx.doi.org/10.1016/j.eswa.2012.02.113.
  30. Noilublao N, Bureerat S. Simultaneous topology, shape and sizing optimisation of a three-dimensional slender truss tower using multi objective evolutionary algorithms. Comput. Struct. 2011;89(23-24)2531-8. http://dx.doi.org/10.1016/j.compstruc.2011.08.010.
  31. Ozturk N, Yildiz AR, Kaya N, Ferruh O. Neuro-genetic design optimization framework to support the integrated robust design optimization process in CE. Concurr. Eng. 2006;14(1)5-16. http://dx.doi.org/10.1177/1063293X06063314.
  32. Patel V, Savsani V. Optimization of a plate-fin heat exchanger design through an improved multi-objective teaching-learning based optimization (MO-ITLBO). Chem. Eng. Res. Des. 2014:1-12. http://dx.doi.org/10.1016/j.cherd.2014.02.005.
  33. Patel VK, Savsani VJ. A multi-objective improved teaching-learning based optimization algorithm (MO-ITLBO). Inform. Sci. 2014. http://dx.doi.org/10.1016/j.ins.2014.05.049.
  34. Pholdee N, Bureerat S. Comparative performance of meta-heuristic algorithms for mass minimisation of trusses with dynamic constraints. Adv. Eng. Softw. 2014;75:1-13. http://dx.doi.org/10.1016/j.advengsoft.2014.04.005.
  35. Piotrowski AP. Adaptive memetic differential evolution with global and local neighbourhood-based mutation operators. Inform. Sci. 2013;241:164-94. http://dx.doi.org/10.1016/j.ins.2013.03.060.
  36. Shan H, Yasuda T, Ohkura K. A self adaptive hybrid enhanced artificial bee colony algorithm for continuous optimization problems. BioSystems 2015;43-53:706-11. http://dx.doi.org/10.1109/SII.2013.6776717.
  37. Sigmund O. Design of multiphysics actuators using topology optimization - Part II: Two-material structures. Comput. Methods Appl. Mech. Eng. 2001;190(49-50)6605-27. http://dx.doi.org/10.1016/S0045-7825(01)00252-3.
  38. Tollo G, Lardeux F, Maturana J, Saubion F. An experimental study of adaptive control for evolutionary algorithms. Appl. Soft Comput. 2015;35:359-72. http://dx.doi.org/10.1016/j.asoc.2015.06.016.
  39. Wang D, Zhang WH, Jiang JS. Truss optimization on shape and sizing with frequency constraints. AIAA J. 2004;42(3)622-30. http://dx.doi.org/10.2514/1.1711.
  40. Wei L, Mei Z, Guangming W, Guang M. Truss optimization on shape and sizing with frequency constraints based on genetic algorithm. Comput. Mech. 2005;35:361-8. http://dx.doi.org/10.1007/s00466-004-0623-8.
  41. Wei L, Tang T, Xie X, Shen W. Truss optimization on shape and sizing with frequency constraints based on parallel genetic algorithm. Struct. Multidiscip. Optim. 2011;43(5)665-82. http://dx.doi.org/10.1007/s00158-010-0600-0.
  42. Xu B, Jiang J, Tong W, Wu K. Topology group concept for truss topology optimization with frequency constraints. J. Sound Vibr. 2003;261(5)911-25. http://dx.doi.org/10.1016/S0022-460X(02)01021-0.
  43. Yi W, Zhou Y, Gao L, Li X, Mou J. An improved adaptive differential evolution algorithm for continuous optimization. Exp. Syst. Appl. 2016;44:1-12. http://dx.doi.org/10.1016/j.eswa.2015.09.031.
  44. Yildiz AR, Ozturk N, Kaya N, Ozturk F. Hybrid multi-objective shape design optimization using Taguchi's method and genetic algorithm. Struct. Multidiscip. Optim. 2007;34(4)317-32. http://dx.doi.org/10.1007/s00158-006-0079-x.
  45. Yildiz AR, Solanki KN. Multi-objective optimization of vehicle crashworthiness using a new particle swarm based approach. Int. J. Adv. Manuf. Technol. 2012;59:367-76. http://dx.doi.org/10.1007/s00170-011-3496-y.
  46. Yildiz AR. A new hybrid particle swarm optimization approach for structural design optimization in the automotive industry. J. Automob. Eng. 2012;226(10)1340-51. http://dx.doi.org/10.1177/0954407012443636.
  47. Yildiz AR. A novel particle swarm optimization approach for product design and manufacturing. Int. J. Adv. Manuf. Technol. 2009;40(5-6)617-28. http://dx.doi.org/10.1007/s00170-008-1453-1.
  48. Yildiz AR. Comparison of evolutionary-based optimization algorithms for structural design optimization. Eng. Appl. Artif. Intell. 2013;26(1)327-33. http://dx.doi.org/10.1016/j.engappai.2012.05.014.
  49. Zuo W, Bai J, Li B. A hybrid OC-GA approach for fast and global truss optimization with frequency constraints. Appl. Soft Comput. 2014;14(C)528-35. http://dx.doi.org/10.1016/j.asoc.2013.09.002.

Cited by

  1. Hybrid Metaheuristic-Neural Assessment of the Adhesion in Existing Cement Composites vol.7, pp.4, 2016, https://doi.org/10.3390/coatings7040049
  2. Modified Sub-Population Based Heat Transfer Search Algorithm for Structural Optimization : vol.8, pp.3, 2017, https://doi.org/10.4018/ijamc.2017070101
  3. Truss optimization with multiple frequency constraints and automatic member grouping vol.57, pp.2, 2018, https://doi.org/10.1007/s00158-017-1761-x
  4. Prediction of High-Performance Concrete Strength Using a Hybrid Artificial Intelligence Approach vol.203, pp.None, 2016, https://doi.org/10.1051/matecconf/201820306006
  5. Optimum Seismic Design of 3D Irregular Steel Frames Using Recently Developed Metaheuristic Algorithms vol.32, pp.3, 2018, https://doi.org/10.1061/(asce)cp.1943-5487.0000760
  6. Metaheuristic Algorithms for Proactive and Reactive Project Scheduling to Minimize Contractor’s Cash Flow Gap under Random Activity Duration vol.6, pp.None, 2016, https://doi.org/10.1109/access.2018.2828037
  7. Pseudodynamic Bearing Capacity Analysis of Shallow Strip Footing Using the Advanced Optimization Technique “Hybrid Symbiosis Organisms Search Algorithm” with Numerical Validation vol.2018, pp.None, 2016, https://doi.org/10.1155/2018/3729360
  8. Weight-Estimation Method of FPSO Topsides Considering the Work Breakdown Structure vol.140, pp.1, 2016, https://doi.org/10.1115/1.4037828
  9. Size, shape, and topology optimization of planar and space trusses using mutation-based improved metaheuristics vol.5, pp.2, 2016, https://doi.org/10.1016/j.jcde.2017.10.001
  10. Opposition multiple objective symbiotic organisms search (OMOSOS) for time, cost, quality and work continuity tradeoff in repetitive projects vol.5, pp.2, 2016, https://doi.org/10.1016/j.jcde.2017.11.008
  11. A novel chaos-integrated symbiotic organisms search algorithm for global optimization vol.22, pp.11, 2016, https://doi.org/10.1007/s00500-017-2597-4
  12. Improved Hybrid Symbiotic Organism Search Task-Scheduling Algorithm for Cloud Computing vol.12, pp.8, 2016, https://doi.org/10.3837/tiis.2018.08.001
  13. An improved heat transfer search algorithm for unconstrained optimization problems vol.6, pp.1, 2019, https://doi.org/10.1016/j.jcde.2018.04.003
  14. A modified symbiotic organisms search algorithm for unmanned combat aerial vehicle route planning problem vol.70, pp.1, 2016, https://doi.org/10.1080/01605682.2017.1418151
  15. Multi-UAV Reconnaissance Task Assignment for Heterogeneous Targets Based on Modified Symbiotic Organisms Search Algorithm vol.19, pp.3, 2016, https://doi.org/10.3390/s19030734
  16. Topology optimization of truss subjected to static and dynamic constraints by integrating simulated annealing into passing vehicle search algorithms vol.35, pp.2, 2016, https://doi.org/10.1007/s00366-018-0612-8
  17. MULTI-OBJECTIVE SYMBIOTIC ORGANISMS OPTIMIZATION FOR MAKING TIME-COST TRADEOFFS IN REPETITIVE PROJECT SCHEDULING PROBLEM vol.25, pp.4, 2016, https://doi.org/10.3846/jcem.2019.9681
  18. A New Two-Phase Method for Damage Detection in Skeletal Structures vol.43, pp.suppl1, 2016, https://doi.org/10.1007/s40996-018-0190-4
  19. Modified symbiotic organisms search for structural optimization vol.35, pp.4, 2019, https://doi.org/10.1007/s00366-018-0662-y
  20. Hypotrochoid spiral optimization approach for sizing and layout optimization of truss structures with multiple frequency constraints vol.35, pp.4, 2019, https://doi.org/10.1007/s00366-018-0675-6
  21. Prediction of permanent deformation in asphalt pavements using a novel symbiotic organisms search-least squares support vector regression vol.31, pp.10, 2016, https://doi.org/10.1007/s00521-018-3426-0
  22. A survey on new generation metaheuristic algorithms vol.137, pp.None, 2019, https://doi.org/10.1016/j.cie.2019.106040
  23. Shape and size optimization of trusses with dynamic constraints using a metaheuristic algorithm vol.33, pp.5, 2016, https://doi.org/10.12989/scs.2019.33.5.747
  24. Optimal TCSC Allocation via Chaotic Immune Symbiotic Organisms Search for Voltage Profile Improvement vol.152, pp.None, 2016, https://doi.org/10.1051/e3sconf/202015203002
  25. Symbiotic Organism Search Algorithm for Power Loss Minimization in Radial Distribution Systems by Network Reconfiguration and Distributed Generation Placement vol.2020, pp.None, 2016, https://doi.org/10.1155/2020/1615792
  26. Large-scale structural optimization using a fuzzy reinforced swarm intelligence algorithm vol.142, pp.None, 2016, https://doi.org/10.1016/j.advengsoft.2020.102790
  27. Novel application of optimal fuzzy‐adaptive symbiotic organism search‐based two‐degree‐of‐freedom fuzzy proportional integral derivative controller for automatic gen vol.30, pp.5, 2016, https://doi.org/10.1002/2050-7038.12349
  28. Size and Shape Optimization of Truss Structures with Natural Frequency Constraints Using Modified Simulated Annealing Algorithm vol.45, pp.5, 2016, https://doi.org/10.1007/s13369-019-04138-5
  29. A Novel Hybrid Metaheuristic Algorithm for Optimization of Construction Management Site Layout Planning vol.13, pp.5, 2020, https://doi.org/10.3390/a13050117
  30. Frequency-constrained truss optimization using the fruit fly optimization algorithm with an adaptive vision search strategy vol.52, pp.5, 2016, https://doi.org/10.1080/0305215x.2019.1624738
  31. Performance evaluation of GSA, SOS, ABC and ANN algorithms on linear and quadratic modelling of eggplant drying kinetic vol.40, pp.3, 2016, https://doi.org/10.1590/fst.12719
  32. Optimization of structural and mechanical engineering problems using the enriched ViS-BLAST method vol.77, pp.5, 2016, https://doi.org/10.12989/sem.2021.77.5.613
  33. Probabilistic Design of Retaining Wall Using Machine Learning Methods vol.11, pp.12, 2016, https://doi.org/10.3390/app11125411
  34. An Enhanced Discrete Symbiotic Organism Search Algorithm for Optimal Task Scheduling in the Cloud vol.14, pp.7, 2016, https://doi.org/10.3390/a14070200
  35. Cooperative meta-heuristic algorithms for global optimization problems vol.176, pp.None, 2016, https://doi.org/10.1016/j.eswa.2021.114788
  36. Investigating bound handling schemes and parameter settings for the interior search algorithm to solve truss problems vol.3, pp.10, 2021, https://doi.org/10.1002/eng2.12405
  37. An enhanced symbiotic organisms search algorithm for design optimization of trusses with frequency constraints vol.24, pp.14, 2016, https://doi.org/10.1177/13694332211026219
  38. Application of HSOS algorithm on pseudo-dynamic bearing capacity of shallow strip footing along with numerical analysis vol.15, pp.10, 2016, https://doi.org/10.1080/19386362.2019.1598015
  39. A Symbiotic Organism Search-Based Selective Harmonic Elimination in a Switched Capacitor Multilevel Inverter vol.15, pp.1, 2016, https://doi.org/10.3390/en15010089