• Title/Summary/Keyword: Evolution equation

Search Result 280, Processing Time 0.025 seconds

ON STOCHASTIC EVOLUTION EQUATIONS WITH STATE-DEPENDENT DIFFUSION TERMS

  • Kim, Jai-Heui;Song, Jung-Hoon
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1019-1028
    • /
    • 1997
  • The integral solution for a deterministic evolution equation was introduced by Benilan. Similarly, in this paper, we define the integral solution for a stochastic evolution equation with a state-dependent diffusion term and prove that there exists a unique integral solution of the stochastic evolution euation under some conditions for the coefficients. Moreover we prove that this solution is a unique strong solution.

  • PDF

ALMOST PERIODIC SOLUTIONS OF PERIODIC SECOND ORDER LINEAR EVOLUTION EQUATIONS

  • Nguyen, Huu Tri;Bui, Xuan Dieu;Vu, Trong Luong;Nguyen, Van Minh
    • Korean Journal of Mathematics
    • /
    • v.28 no.2
    • /
    • pp.223-240
    • /
    • 2020
  • The paper is concerned with periodic linear evolution equations of the form x"(t) = A(t)x(t)+f(t), where A(t) is a family of (unbounded) linear operators in a Banach space X, strongly and periodically depending on t, f is an almost (or asymptotic) almost periodic function. We study conditions for this equation to have almost periodic solutions on ℝ as well as to have asymptotic almost periodic solutions on ℝ+. We convert the second order equation under consideration into a first order equation to use the spectral theory of functions as well as recent methods of study. We obtain new conditions that are stated in terms of the spectrum of the monodromy operator associated with the first order equation and the frequencies of the forcing term f.

CIRCULAR SPECTRUM AND ASYMPTOTIC PERIODIC SOLUTIONS TO A CLASS OF NON-DENSELY DEFINED EVOLUTION EQUATIONS

  • Le Anh Minh;Nguyen Ngoc Vien
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.1153-1162
    • /
    • 2023
  • In this paper, for the bounded solution of the non-densely defined non-autonomous evolution equation, we present the condition for asymptotic periodicity by using the circular spectral theory of functions on the half line and the extrapolation theory of non-densely defined evolution equation.

EVOLUTION EQUATIONS ON A RIEMANNIAN MANIFOLD WITH A LOWER RICCI CURVATURE BOUND

  • Chang, Jeongwook
    • East Asian mathematical journal
    • /
    • v.30 no.1
    • /
    • pp.79-91
    • /
    • 2014
  • We consider the parabolic evolution differential equation such as heat equation and porus-medium equation on a Riemannian manifold M whose Ricci curvature is bounded below by $-(n-1)k^2$ and bounded below by 0 on some amount of M. We derive some bounds of differential quantities for a positive solution and some inequalities which resemble Harnack inequalities.

TRAVELING WAVE SOLUTIONS FOR HIGHER DIMENSIONAL NONLINEAR EVOLUTION EQUATIONS USING THE $(\frac{G'}{G})$- EXPANSION METHOD

  • Zayed, E.M.E.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.383-395
    • /
    • 2010
  • In the present paper, we construct the traveling wave solutions involving parameters of nonlinear evolution equations in the mathematical physics via the (3+1)- dimensional potential- YTSF equation, the (3+1)- dimensional generalized shallow water equation, the (3+1)- dimensional Kadomtsev- Petviashvili equation, the (3+1)- dimensional modified KdV-Zakharov- Kuznetsev equation and the (3+1)- dimensional Jimbo-Miwa equation by using a simple method which is called the ($\frac{G'}{G}$)- expansion method, where $G\;=\;G(\xi)$ satisfies a second order linear ordinary differential equation. When the parameters are taken special values, the solitary waves are derived from the travelling waves. The travelling wave solutions are expressed by hyperbolic, trigonometric and rational functions.

ON EVOLUTION OF FINSLER RICCI SCALAR

  • Bidabad, Behroz;Sedaghat, Maral Khadem
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.749-761
    • /
    • 2018
  • Here, we calculate the evolution equation of the reduced hh-curvature and the Ricci scalar along the Finslerian Ricci flow. We prove that Finsler Ricci flow preserves positivity of the reduced hh-curvature on finite time. Next, it is shown that evolution of Ricci scalar is a parabolic-type equation and moreover if the initial Finsler metric is of positive flag curvature, then the flag curvature, as well as the Ricci scalar, remain positive as long as the solution exists. Finally, we present a lower bound for Ricci scalar along Ricci flow.

EXISTENCE FOR A NONLINEAR IMPULSIVE FUNCTIONAL INTEGRODIFFERENTIAL EQUATION WITH NONLOCAL CONDITIONS IN BANACH SPACES

  • Yan, Zuomao
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.681-696
    • /
    • 2011
  • In this paper, we consider the existence of mild solutions for a certain class of nonlinear impulsive functional evolution integrodifferential equation with nonlocal conditions in Banach spaces. A sufficient condition is established by using Schaefer's fixed point theorem combined with an evolution system. An example is also given to illustrate our result.

THE METHOD OF LOWER AND UPPER SOLUTIONS FOR IMPULSIVE FRACTIONAL EVOLUTION EQUATIONS IN BANACH SPACES

  • Gou, Haide;Li, Yongxiang
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.61-88
    • /
    • 2020
  • In this paper, we investigate the existence of mild solutions for a class of fractional impulsive evolution equation with periodic boundary condition by means of the method of upper and lower solutions and monotone iterative method. Using the theory of Kuratowski measure of noncompactness, a series of results about mild solutions are obtained. Finally, two examples are given to illustrate our results.

ON ASYMPTOTIC BEHAVIOR OF A RANDOM EVOLUTION

  • Cho, Nhan-Sook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.233-245
    • /
    • 1997
  • In this paper, we study the asymptotic behavior of a random evolution. Some examples of random evolution can be found in Chapter 12 of [2].

  • PDF