References
- COUTIN, L. AND QIAN, Z. (2000). 'Stochastic differential equations for fractional Brownian motions', Comptes Rendus des Seances de l'Academie des Sciences, I331, 75-80
-
DECREUSEFOND, L. AND
\"U ST\"U NEL, A. S. (1999). 'Stochastic analysis of the fractional Brownian motion', Potential Analysis, 10, 177-214 https://doi.org/10.1023/A:1008634027843 - DUNCAN, T. E., Hu, Y. AND PASIK-DUNCAN, B. (2000). 'Stochastic calculus for fractional Brownian motion I. theory', SIAM Journal-on Control and Optimization, 38, 582-612 https://doi.org/10.1137/S036301299834171X
- DUNCAN, T. E., PASIK-DUNCAN, B. AND MASLOWSKI, B. (2002). 'Fractional Brownian motion and stochastic equations in Hilbert spaces', Stochastics and Dynamics, 2, 225-250 https://doi.org/10.1142/S0219493702000340
- GRECKSCH, W. AND ANH, V. V. (1999). 'A parabolic stochastic differential equation with fractional Brownian motion input', Statistics and Probability Letters, 41, 337-346
- GRECKSCH, W. AND KLOEDEN, P. (1996). 'Time-discretised Galerkin approximations of para-bolic stochastic PDEs', Bulletin of the Australian Mathematical Society, 54, 79-85 https://doi.org/10.1017/S0004972700015094
-
GY
\"O NGY, I. (1998). 'Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise I', Potential Analysis, 9, 1-25 https://doi.org/10.1023/A:1008615012377 -
GY
\"O NGY, I. (1999). 'Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise II', Potential Analysis, 11, 1-37 https://doi.org/10.1023/A:1008699504438 - HAUSENBLAS, E. (2003). 'Approximation for semilinear stochastic evolution equations', Potential Analysis, 18, 141-186 https://doi.org/10.1023/A:1020552804087
- HARRINGTON, R. F. (1993). Field Computation by Moments Method, IEEE, New York
- MANDELBROT, B. B. AND VAN NESS, J. W. (1968). 'Fractional Brownian motions, fractional noises and applications', SIAM Review, 10, 422-437 https://doi.org/10.1137/1010093
- MASLOWSKI, B. AND NUALART, D. (2003). 'Evolution equations driven by a fractional Brownian motion', Journal of Functional Analysis, 202, 277-305 https://doi.org/10.1016/S0022-1236(02)00065-4
- PAZY, A. (1983). Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York
- SHARDLOW, T. (1999). 'Numerical methods for stochastic parabolic PDEs', Numerical Functional Analysis and Optimization, 20, 121-145 https://doi.org/10.1080/01630569908816884
- TINDEL, S., TUDOR, C. A. AND VIENS, F. (2003). 'Stochastic evolution equations with fractional Brownian motion', Probability Theory and Related Fields, 127, 186-204 https://doi.org/10.1007/s00440-003-0282-2