• Title/Summary/Keyword: Event tree

Search Result 293, Processing Time 0.027 seconds

On Multiple ETA-based Test Framework to Enhance Safety Maturity of Live Fire Tests for Weapon Systems (무기체계 실사격 시험의 안전성 강화를 위한 다중 사건나무분석 기반의 시험구조에 관한 연구)

  • Ye, Sung Hyuck;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.1
    • /
    • pp.75-84
    • /
    • 2015
  • Successful development of weapon systems requires a stringent verification and validation (V&V) process due to the nature of the weapons in which continual increase of operational capability makes the system requirements more complicated to meet. Thus, test and evaluation (T&E) of weapon systems is becoming more difficult. In such a situation, live fire tests appear to be effective and useful methods in not only carrying out V&V of the weapon systems under development, but also increasing the maturity of the end users operability of the system. However, during the process for live fire tests, a variety of accidents or mishaps can happen due to explosion, pyro, separation, and so on. As such, appropriate means to mitigate mishap possibilities should be provided and applied during the live fire tests. To study a way of how to accomplish it is the objective of this paper. To do so, top-level sources of hazard are first identified. A framework for T&E is also described. Then, to enhance the test range safety, it is discussed how test scenarios can be generated. The proposed method is based on the use of the anticipatory failure determination (AFD) and multiple event tree analysis (ETA) in analyzing range safety. It is intended to identify unexpected hazard components even in the environment with constraints. It is therefore expected to reduce accident possibilities as an alternative to the traditional root-cause analysis.

Missing Pattern Matching of Rough Set Based on Attribute Variations Minimization in Rough Set (속성 변동 최소화에 의한 러프집합 누락 패턴 부합)

  • Lee, Young-Cheon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.6
    • /
    • pp.683-690
    • /
    • 2015
  • In Rough set, attribute missing values have several problems such as reduct and core estimation. Further, they do not give some discernable pattern for decision tree construction. Now, there are several methods such as substitutions of typical attribute values, assignment of every possible value, event covering, C4.5 and special LEMS algorithm. However, they are mainly substitutions into frequently appearing values or common attribute ones. Thus, decision rules with high information loss are derived in case that important attribute values are missing in pattern matching. In particular, there is difficult to implement cross validation of the decision rules. In this paper we suggest new method for substituting the missing attribute values into high information gain by using entropy variation among given attributes, and thereby completing the information table. The suggested method is validated by conducting the same rough set analysis on the incomplete information system using the software ROSE.

The Post-occupancy Evaluation of Roofgarden at Hospital - A Case Study of Asan Medical Center - (병원 옥상정원의 이용후 평가 - 서울아산병원을 대상으로 -)

  • 김인혜;허근영;최아현;김유일
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.5
    • /
    • pp.58-72
    • /
    • 2003
  • Rooftop greenery has been used as a way to solve urban environmental problems by creating green space in densely populated cities. This study was carried out to suggest more effective designs for roof-garden at hospitals through a post-occupancy evaluation. The roofgarden of Asan Medical Center was evaluated with regards to setting, proximate environmental context, users, and design activity by a multi-method including plan investigations, observations, in-depth interviews and questionnaires. The results are summarized as follows; the users' main activities included resting, walking, and talking. A number of users were observed at shaded spaces sitting on such things as benches, pergolas, and shelters. The satisfaction of the users showed high satisfaction level except in the amount of shade, facilities, and shelter. The variables affecting a overall satisfaction were ‘accessibility’, ‘safety’, ‘quality of surroundings’, and ‘suitability for speculation’. By comparing the design concept with using pattern, designer's intention was not reflected sufficiently in several aspects such as ‘event deck for therapy programs’, ‘grove and path’, and ‘low planters’. This study suggests some design implications; it is necessary to furnish shaded sitting places for passive behaviors and pathways for walking or a light exercise. A wind-break wall with glass windows could widen the users' views in a limited space. Natural shade like tree shade or pergola are more desirable than artificial shades. As for the vertical location of the roofgarden, the middle floor could be better than top area for accessibility. Characteristics of building and users should be considered in detail to provide distinct spaces. Proper technical standards for the greening of artificial ground should be established.

Development of a Probabilistic Safety Assessment Framework for an Interim Dry Storage Facility Subjected to an Aircraft Crash Using Best-Estimate Structural Analysis

  • Almomani, Belal;Jang, Dongchan;Lee, Sanghoon;Kang, Hyun Gook
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.411-425
    • /
    • 2017
  • Using a probabilistic safety assessment, a risk evaluation framework for an aircraft crash into an interim spent fuel storage facility is presented. Damage evaluation of a detailed generic cask model in a simplified building structure under an aircraft impact is discussed through a numerical structural analysis and an analytical fragility assessment. Sequences of the impact scenario are shown in a developed event tree, with uncertainties considered in the impact analysis and failure probabilities calculated. To evaluate the influence of parameters relevant to design safety, risks are estimated for three specification levels of cask and storage facility structures. The proposed assessment procedure includes the determination of the loading parameters, reference impact scenario, structural response analyses of facility walls, cask containment, and fuel assemblies, and a radiological consequence analysis with dose-risk estimation. The risk results for the proposed scenario in this study are expected to be small relative to those of design basis accidents for best-estimated conservative values. The importance of this framework is seen in its flexibility to evaluate the capability of the facility to withstand an aircraft impact and in its ability to anticipate potential realistic risks; the framework also provides insight into epistemic uncertainty in the available data and into the sensitivity of the design parameters for future research.

Study on the Fire Safety Estimation for a Pilot LNG Storage Tank (PILOT LNG저장탱크의 화재안전성 평가에 관한 연구)

  • 고재선;김효
    • Fire Science and Engineering
    • /
    • v.18 no.3
    • /
    • pp.57-73
    • /
    • 2004
  • Quantitative safety analysis through a fault tree method has been conducted for a fire broken out over the spilling LNG from a pilot LNG tank, which may have 4 types of scenarios causing potentially risky results. When we consider LNG release from venting pipelines as a first event, any specific radius of Low Flammable Limit(LFL) has not been built up. The second case of LNG outflow from the rupture of storage tank which will be the severest has been analyzed and the results revealed various diffusion areas to the leaking times even with the same amount of LNG release. As a third case LNG leakage from the inlet/outlet pipelines was taken into consider. The results showed no significant differences of LFL radii between the two spilling times of 10 and 60 minutes. Hence, we have known the most affecting factor on the third scenario is an initial amount of LNG release. Finally, the extent of LFL was calculated when LNG pipelines around the dike area were damaged. In addition, consequence analysis has been also performed to acquire the heat radiation and flame magnitude for each case.

Study on Quantification Method Based on Monte Carlo Sampling for Multiunit Probabilistic Safety Assessment Models

  • Oh, Kyemin;Han, Sang Hoon;Park, Jin Hee;Lim, Ho-Gon;Yang, Joon Eon;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.710-720
    • /
    • 2017
  • In Korea, many nuclear power plants operate at a single site based on geographical characteristics, but the population density near the sites is higher than that in other countries. Thus, multiunit accidents are a more important consideration than in other countries and should be addressed appropriately. Currently, there are many issues related to a multiunit probabilistic safety assessment (PSA). One of them is the quantification of a multiunit PSA model. A traditional PSA uses a Boolean manipulation of the fault tree in terms of the minimal cut set. However, such methods have some limitations when rare event approximations cannot be used effectively or a very small truncation limit should be applied to identify accident sequence combinations for a multiunit site. In particular, it is well known that seismic risk in terms of core damage frequency can be overestimated because there are many events that have a high failure probability. In this study, we propose a quantification method based on a Monte Carlo approach for a multiunit PSA model. This method can consider all possible accident sequence combinations in a multiunit site and calculate a more exact value for events that have a high failure probability. An example model for six identical units at a site was also developed and quantified to confirm the applicability of the proposed method.

Content Delivery Network Based on MST Algorithm (MST 알고리즘 기반 콘텐츠 전송 네트워크에 관한 연구)

  • Lee, Hyung-ok;Kang, Mi-young;Nam, Ji-seung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.2
    • /
    • pp.178-188
    • /
    • 2016
  • The traffic in the wired and wireless networks has increased exponentially because of increase of smart phone and improvement of PC performance. Multimedia services and file transmission such as Facebook, Youtube occupy a large part of the traffic. CDN is a technique that duplicates the contents on a remote web server of content provider to local CDN servers near clients and chooses the optimal CDN server for providing the content to the client in the event of a content request. In this paper, the content request message between CDN servers and the client used the SCRP algorithm utilizing the MST algorithm and the traffic throughput was optimized. The average response time for the content request is reduced by employing HC_LRU cache algorithm that improves the cache hit ratio. The proposed SCRP and HC_LRU algorithm may build a scalable content delivery network system that efficiently utilizes network resources, achieves traffic localization and prevents bottlenecks.

Extracting Specific Information in Web Pages Using Machine Learning (머신러닝을 이용한 웹페이지 내의 특정 정보 추출)

  • Lee, Joung-Yun;Kim, Jae-Gon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.189-195
    • /
    • 2018
  • With the advent of the digital age, production and distribution of web pages has been exploding. Internet users frequently need to extract specific information they want from these vast web pages. However, it takes lots of time and effort for users to find a specific information in many web pages. While search engines that are commonly used provide users with web pages containing the information they are looking for on the Internet, additional time and efforts are required to find the specific information among extensive search results. Therefore, it is necessary to develop algorithms that can automatically extract specific information in web pages. Every year, thousands of international conference are held all over the world. Each international conference has a website and provides general information for the conference such as the date of the event, the venue, greeting, the abstract submission deadline for a paper, the date of the registration, etc. It is not easy for researchers to catch the abstract submission deadline quickly because it is displayed in various formats from conference to conference and frequently updated. This study focuses on the issue of extracting abstract submission deadlines from International conference websites. In this study, we use three machine learning models such as SVM, decision trees, and artificial neural network to develop algorithms to extract an abstract submission deadline in an international conference website. Performances of the suggested algorithms are evaluated using 2,200 conference websites.

System dynamics simulation of the thermal dynamic processes in nuclear power plants

  • El-Sefy, Mohamed;Ezzeldin, Mohamed;El-Dakhakhni, Wael;Wiebe, Lydell;Nagasaki, Shinya
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1540-1553
    • /
    • 2019
  • A nuclear power plant (NPP) is a highly complex system-of-systems as manifested through its internal systems interdependence. The negative impact of such interdependence was demonstrated through the 2011 Fukushima Daiichi nuclear disaster. As such, there is a critical need for new strategies to overcome the limitations of current risk assessment techniques (e.g. the use of static event and fault tree schemes), particularly through simulation of the nonlinear dynamic feedback mechanisms between the different NPP systems/components. As the first and key step towards developing an integrated NPP dynamic probabilistic risk assessment platform that can account for such feedback mechanisms, the current study adopts a system dynamics simulation approach to model the thermal dynamic processes in: the reactor core; the secondary coolant system; and the pressurized water reactor. The reactor core and secondary coolant system parameters used to develop system dynamics models are based on those of the Palo Verde Nuclear Generating Station. These three system dynamics models are subsequently validated, using results from published work, under different system perturbations including the change in reactivity, the steam valve coefficient, the primary coolant flow, and others. Moving forward, the developed system dynamics models can be integrated with other interacting processes within a NPP to form the basis of a dynamic system-level (systemic) risk assessment tool.

Dynamic quantitative risk assessment of accidents induced by leakage on offshore platforms using DEMATEL-BN

  • Meng, Xiangkun;Chen, Guoming;Zhu, Gaogeng;Zhu, Yuan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.22-32
    • /
    • 2019
  • On offshore platforms, oil and gas leaks are apt to be the initial events of major accidents that may result in significant loss of life and property damage. To prevent accidents induced by leakage, it is vital to perform a case-specific and accurate risk assessment. This paper presents an integrated method of Ddynamic Qquantitative Rrisk Aassessment (DQRA)-using the Decision Making Trial and Evaluation Laboratory (DEMATEL)-Bayesian Network (BN)-for evaluation of the system vulnerabilities and prediction of the occurrence probabilities of accidents induced by leakage. In the method, three-level indicators are established to identify factors, events, and subsystems that may lead to leakage, fire, and explosion. The critical indicators that directly influence the evolution of risk are identified using DEMATEL. Then, a sequential model is developed to describe the escalation of initial events using an Event Tree (ET), which is converted into a BN to calculate the posterior probabilities of indicators. Using the newly introduced accident precursor data, the failure probabilities of safety barriers and basic factors, and the occurrence probabilities of different consequences can be updated using the BN. The proposed method overcomes the limitations of traditional methods that cannot effectively utilize the operational data of platforms. This work shows trends of accident risks over time and provides useful information for risk control of floating marine platforms.