• Title/Summary/Keyword: Eurocode 7

Search Result 26, Processing Time 0.026 seconds

Review of Design Flexural Strengths of Steel-Concrete Composite Beams for Building Structures

  • Chung, Lan;Lim, Jong-Jin;Hwang, Hyeon-Jong;Eom, Tae-Sung
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.sup3
    • /
    • pp.109-121
    • /
    • 2016
  • Recently, as the use of high-performance materials and complex composite methods has increased, the need for advanced design specifications for steel-concrete composite structures has grown. In this study, various design provisions for ultimate flexural strengths of composite beams were reviewed. Design provisions reviewed included the load and resistance factor design method of AISC 360-10 and the partial factor methods of KSSC-KCI, Eurocode 4 and JSCE 2009. The design moment strengths of composite beams were calculated according to each design specification and the variation of the calculated strengths with design variables was investigated. Furthermore, the relationships between the deformation capacity and resistance factor for flexure were examined quantitatively. Results showed that the design strength and resistance factor for flexure of composite beams were substantially affected by the design formats and variables.

Study on fatigue experiment for transverse butt welds under 2G and 3G weld positions

  • Kang, Sung-Wook;Park, Yong-Man;Jang, Beom-Seon;Jeon, Yu-Chul;Kim, Seong-Min
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.5
    • /
    • pp.833-847
    • /
    • 2015
  • Although the transverse butt weld method with ceramic backing strip has been widely used in various industrial fields for its fabricational convenience, it is rarely used in offshore industries since the fatigue strength of the weld joint has not been proved sufficiently. This study conducted fatigue tests for series of butt weld specimens with horizontal (2G) and vertical (3G) welding positions in order to verify the fatigue strength compared to S-N curve by DNV (Det Norske Veritas), IIW (International Institute of Welding) and Eurocode 3. The difference of the 2G specimens and the 3G specimens are investigated in terms of angular distortion and the effect on the fatigue strength are analyzed.

Practical and efficient approaches for semi-rigid design of composite frames

  • Gil, Beatriz;Bayo, Eduardo
    • Steel and Composite Structures
    • /
    • v.7 no.2
    • /
    • pp.161-184
    • /
    • 2007
  • The use of composite semi-rigid connections is not fully exploited, in spite of its great number of advantages. Composite semi-rigid connections may lead to an optimal moment distribution that will render lighter structures. Furthermore, using the appropriate semi-rigid connection design, the stability of the frames against lateral loads may entirely rely on the joint stiffness, thus avoiding bracing systems and permitting more diaphanous designs. Although modern codes, such as the Eurocode 4 (EC4), propose thorough methods of analysis they do not provide enough insight and simplicity from the design point of view. The purpose of this paper is to introduce practical and efficient methods of analysis that will facilitate the work of a structural analyst starting from the global analysis of the composite frame and ending on the final connection design. A key aspect is the definition of the stiffness and strength of the connections that will lead to an optimal moment distribution in the composite beams. Two examples are presented in order to clarify the application of the proposed methods and to demonstrate the advantages of the semi-rigid composite design with respect to the alternative pinned and rigid ones. The final aim of the paper is to stimulate and encourage the designer on the use of composite semi-rigid structures.

Comparative in-plane pushover response of a typical RC rectangular wall designed by different standards

  • Dashti, Farhad;Dhakal, Rajesh P.;Pampanin, Stefano
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.667-689
    • /
    • 2014
  • Structural walls (also known as shear walls) are one of the common lateral load resisting elements in reinforced concrete (RC) buildings in seismic regions. The performance of RC structural walls in recent earthquakes has exposed some problems with the existing design of RC structural walls. The main issues lie around the buckling of bars, out-of plane deformation of the wall (especially the zone deteriorated in compression), reinforcement getting snapped beneath a solitary thin crack etc. This study compares performance of a typical wall designed by different standards. For this purpose, a case study RC shear wall is taken from the Hotel Grand Chancellor in Christchurch which was designed according to the 1982 version of the New Zealand concrete structures standard (NZS3101:1982). The wall is redesigned in this study to comply with the detailing requirements of three standards; ACI-318-11, NZS3101:2006 and Eurocode 8 in such a way that they provide the same flexural and shear capacity. Based on section analysis and pushover analysis, nonlinear responses of the walls are compared in terms of their lateral load capacity and curvature as well as displacement ductilities, and the effect of the code limitations on nonlinear responses of the different walls are evaluated. A parametric study is also carried out to further investigate the effect of confinement length and axial load ratio on the lateral response of shear walls.

Boundary Conditions and Fire Behavior of Concrete Filled Tubular Composite Columns

  • Rodrigues, Joao Paulo C.;Correia, Antonio J.M.;Kodur, Venkatesh
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.4
    • /
    • pp.313-325
    • /
    • 2018
  • Concrete-filled steel tubular (CFST) members are commonly used as composite columns in modern construction. However, the current guidelines for members' fire design (EN1994-1-2) have been proved to be unsafe in case the relative slenderness is higher than 0.5. In addition, the simplified design methods of Eurocode 4 are limited to circular and square CFST columns, while in practice columns with rectangular and elliptical hollow sections are being increasingly used because of their architectural aesthetics. In the last years a large experimental research has been carried out at Coimbra University on the topic. They have been tested concrete filled circular, square, rectangular and elliptical hollow columns with restrained thermal elongation. Some parameters such as the slenderness, the type of cross-section geometry as well as the axial and rotational restraint of the surrounding structure to the column have been tested in order to evaluate their influence on the fire resistance of such columns. In this paper it is evaluated the influence of the boundary conditions (pin-ended and semi-rigid end-support conditions) on the behavior of the columns in case of fire. In these tests it could not be seen a marked effect of the tested boundary conditions but it is believed that the increasing of rotational stiffness increases the fire resistance of the columns.

The role of slenderness on the seismic behavior of ground-supported cylindrical silos

  • Demir, Aysegul Durmus;Livaoglu, Ramazan
    • Advances in concrete construction
    • /
    • v.7 no.2
    • /
    • pp.65-74
    • /
    • 2019
  • This paper reports on the results of a parametric study, which examines the effects of varying aspect ratios on the dynamic response of cylindrical silos directly supported on the ground under earthquake loading. Previous research has shown that numerical models can provide considerably realistic simulations when it comes to the behavior of silos by using correct boundary conditions, appropriate element types and material models. To this end, a three dimensional numerical model, taking into account the bulk material-silo wall interaction, was produced by the ANSYS commercial program, which is in turn based on the finite element method. The results obtained from the numerical analysis are discussed comparatively in terms of dynamic material pressure, horizontal displacement, equivalent base shear force and equivalent bending moment responses for considered aspect ratios. The effects experienced because of the slenderness of the silo in regards to the seismic response were evaluated along with the effectiveness of the classification system proposed by Eurocode in evaluating the loads on the vertical walls. Results clearly show that slenderness directly affects the seismic response of such structures especially in terms of behavior and the magnitude of the responses. Furthermore the aspect ratio value of 2.0, given as a behavioral changing limit in the technical literature, can be used as a valid limit for seismic behavior.

Performance Evaluation of the Stair Joints Constructed with Partial Precast Concrete System (프리캐스트 콘크리트 계단 접합부의 접합방식에 따른 성능평가)

  • Chang, Kug-Kwan;Lee, Eun-Jin;Jin, Byung-Chang
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.833-840
    • /
    • 2008
  • The time and cost can be reduced when applying partial precast concrete to the stair system in comparison to the cast-in-place or precast method. Because the performance of staircase which is used for evacuation can be largely different from connection types of precast concrete member, we tried to know structural behavior and performance evaluation according to each type of stair joints by experimental study. In the cast-in-place rigid joint, much reinforcement is needed in the end portion because much stress is concentrated in the middle portion. Also, in the pin joint which is used in the connection point, the maximum stress occurs in the middle point, so not only the amount of re-bar is increased but also the serviceability is largely decreased. The bolt type of semi-rigid joints proposed in this study had been increased strength and serviceability which is similar to the rigid joints. Also, its ductility was shown about 0.7 times in comparison to the rigid type and was about 2.8 times for the pin joint type. According to the classification of joint in Eurocode, it can be considered that it is one of the semi-rigid joints which are in the semi-rigid-full strength, and the structural behavior can be expected by using a model which applied to stiffness value decreased by 40 percent.

Scaling of ground motions from Vrancea (Romania) earthquakes

  • Pavel, Florin;Vacareanu, Radu
    • Earthquakes and Structures
    • /
    • v.11 no.3
    • /
    • pp.505-516
    • /
    • 2016
  • This paper evaluates the scaling of ground motions recorded from nine intermediate-depth earthquakes produced in the Vrancea seismic zone in Romania. The considered ground motion database consists of 363 horizontal recordings obtained on soil classes B and C (according to Eurocode 8). An analysis of the inter- and intra-event spectral accelerations is performed in order to gain information regarding the magnitude and distance scaling of the Vrancea ground motions. The analyses reveal a significant influence of the earthquake magnitude and focal depth on the distance scaling and different magnitude and distance scaling for the two soil classes. A linear magnitude and distance scaling is inferred from the results for the range of magnitudes $5.2{\leq}M_W{\leq}7.1$. The results obtained are checked through stochastic simulations and the influence of the stress drop and kappa values on the ground motion levels is assessed. In addition, five ground motion models which were tested in other studies using recordings from Vrancea earthquakes are analyzed in order to evaluate their corresponding host stress drop and kappa. The results show generally a direct connection between the host kappa values and the host stress drop values. Moreover, all the ground motion models depict magnitude dependent host kappa and stress drop levels.

Structural identification and seismic performance of brick chimneys, Tokoname, Japan

  • Aoki, T.;Sabia, D.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.5
    • /
    • pp.553-570
    • /
    • 2005
  • Dynamic and static analyses of existing structures are very important to obtain reliable information relating to actual structural properties. For this purpose a series of material test, dynamic test and static collapse test of the existing two brick chimneys, in Tokoname, are carried out. From the material tests, Young's modulus and compressive strength of the brick used for these chimneys are estimated to be 3200 MPa and 7.5 MPa, respectively. The results of static collapse test of the existing two brick chimneys are discussed in this paper and composed with the results from FEA (Finite Element analysis). From the results of dynamic tests, the fundamental frequencies of Howa and Iwata brick chimneys are estimated to be about 2.69 Hz and 2.93 Hz, respectively. Their natural modes are identified by ARMAV (Autoregressive Moving Average Vectors) model. On the basis of the static and dynamic experimental tests, a numerical model has been prepared. According to the European code (Eurocode n. 8: "Design of structures for earthquake resistance") non-linear static (Pushover) analysis of the two chimneys is carried out and they seem to be vulnerable to earthquakes with 0.25 to 0.35 g.

The slenderness effect on wind response of industrial reinforced concrete chimneys

  • Karaca, Zeki;Turkeli, Erdem
    • Wind and Structures
    • /
    • v.18 no.3
    • /
    • pp.281-294
    • /
    • 2014
  • There are several parameters affecting the response of industrial reinforced concrete (RC) chimneys, i.e., the severity of wind and earthquake loads acting to the structure, structural properties such as height and cross section of the chimney, the slenderness property of the structure etc. One of the most important parameter that should be considered while understanding the wind response of industrial RC chimneys is slenderness property. Although there is no certain definition for slenderness effect on these structures, some standards like ASCE-7 define slenderness from different aspects of the structural properties. In the first part of this study, general information about the definition of slenderness in the well-known standards and ten selected industrial RC chimneys are given. In the second part of the study, brief information about wind load standards that are used for calculating wind loads namely ACI 307/98, CICIND 2001, DIN 1056, TS 498 and Eurocode 1 is given. In the third part of the study, calculated wind loads for selected chimneys are represented. In the fourth part of this study, the internal forces obtained from load combinations that are applied to chimneys and some graphs presenting the effect of slenderness on chimneys are given. In the last part of the study, a conclusion and discussion part is taking place.