• Title/Summary/Keyword: Euler polynomials

Search Result 104, Processing Time 0.02 seconds

A FURTHER GENERALIZATION OF APOSTOL-BERNOULLI POLYNOMIALS AND RELATED POLYNOMIALS

  • Tremblay, R.;Gaboury, S.;Fugere, J.
    • Honam Mathematical Journal
    • /
    • v.34 no.3
    • /
    • pp.311-326
    • /
    • 2012
  • The purpose of this paper is to introduce and investigate two new classes of generalized Bernoulli and Apostol-Bernoulli polynomials based on the definition given recently by the authors [29]. In particular, we obtain a new addition formula for the new class of the generalized Bernoulli polynomials. We also give an extension and some analogues of the Srivastava-Pint$\acute{e}$r addition theorem [28] for both classes. Finally, by making use of the new adition formula, we exhibit several interesting relationships between generalized Bernoulli polynomials and other polynomials or special functions.

THE n-TH TWISTED CHANGHEE POLYNOMIALS AND NUMBERS

  • Rim, Seog-Hoon;Park, Jin-Woo;Pyo, Sung-Soo;Kwon, Jongkyum
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.741-749
    • /
    • 2015
  • The Changhee polynomials and numbers are introduced in [6]. Some interesting identities and properties of those polynomials are derived from umbral calculus (see [6]). In this paper, we consider Witt-type formula for the n-th twisted Changhee numbers and polynomials and derive some new interesting identities and properties of those polynomials and numbers from the Witt-type formula which are related to special polynomials.

LEONHARD EULER (1707-1783) AND THE COMPUTATIONAL ASPECTS OF SOME ZETA-FUNCTION SERIES

  • Srivastava, Hari Mohan
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.5
    • /
    • pp.1163-1184
    • /
    • 2007
  • In this presentation dedicated to the tricentennial birth anniversary of the great eighteenth-century Swiss mathematician, Leonhard Euler (1707-1783), we begin by remarking about the so-called Basler problem of evaluating the Zeta function ${\zeta}(s)$ [in the much later notation of Georg Friedrich Bernhard Riemann (1826-1866)] when s=2, which was then of vital importance to Euler and to many other contemporary mathematicians including especially the Bernoulli brothers [Jakob Bernoulli (1654-1705) and Johann Bernoulli (1667-1748)], and for which a fascinatingly large number of seemingly independent solutions have appeared in the mathematical literature ever since Euler first solved this problem in the year 1736. We then investigate various recent developments on the evaluations and representations of ${\zeta}(s)$ when $s{\in}{\mathbb{N}}{\backslash}\;[1],\;{\mathbb{N}}$ being the set of natural numbers. We emphasize upon several interesting classes of rapidly convergent series representations for ${\zeta}(2n+1)(n{\in}{\mathbb{N}})$ which have been developed in recent years. In two of many computationally useful special cases considered here, it is observed that ${\zeta}(3)$ can be represented by means of series which converge much more rapidly than that in Euler's celebrated formula as well as the series used recently by Roger $Ap\'{e}ry$ (1916-1994) in his proof of the irrationality of ${\zeta}(3)$. Symbolic and numerical computations using Mathematica (Version 4.0) for Linux show, among other things, that only 50 terms of one of these series are capable of producing an accuracy of seven decimal places.

SPECIAL VALUES AND INTEGRAL REPRESENTATIONS FOR THE HURWITZ-TYPE EULER ZETA FUNCTIONS

  • Hu, Su;Kim, Daeyeoul;Kim, Min-Soo
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.185-210
    • /
    • 2018
  • The Hurwitz-type Euler zeta function is defined as a deformation of the Hurwitz zeta function: $${\zeta}_E(s,x)={\sum_{n=0}^{\infty}}{\frac{(-1)^n}{(n+x)^s}}$$. In this paper, by using the method of Fourier expansions, we shall evaluate several integrals with integrands involving Hurwitz-type Euler zeta functions ${\zeta}_E(s,x)$. Furthermore, the relations between the values of a class of the Hurwitz-type (or Lerch-type) Euler zeta functions at rational arguments have also been given.

Free Vibration Analysis of 'ㄱ' Type Wall Structure using Polynomials having the Property of a Simple and Fixed Support Euler Beam Functions (단순 및 고정 지지된 Euler 보함수 성질을 갖는 다항식을 이용한 'ㄱ'형태 벽면 구조의 고유진동해석)

  • Yoon, DuckYoung;Park, Jeonghee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.12
    • /
    • pp.948-953
    • /
    • 2014
  • Many studies using the assumed mode method have been found for the free vibration analysis of stiffened plate with known elastic boundary conditions. However many local structures such as tank edges and equipment foundations consist of connected structures and it is very difficult to find suitable elastic boundary conditions. In this study combined polynomials which satisfy simply and fixedly supported boundary conditions are proposed. The proposed method has been applied to tanks which bounded by bulkhead and a deck. The results of this study shows good agreements with these obtain by the FEA S/W(Patran/Nastran).

ON THE ANALOGS OF BERNOULLI AND EULER NUMBERS, RELATED IDENTITIES AND ZETA AND L-FUNCTIONS

  • Kim, Tae-Kyun;Rim, Seog-Hoon;Simsek, Yilmaz;Kim, Dae-Yeoul
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.435-453
    • /
    • 2008
  • In this paper, by using q-deformed bosonic p-adic integral, we give $\lambda$-Bernoulli numbers and polynomials, we prove Witt's type formula of $\lambda$-Bernoulli polynomials and Gauss multiplicative formula for $\lambda$-Bernoulli polynomials. By using derivative operator to the generating functions of $\lambda$-Bernoulli polynomials and generalized $\lambda$-Bernoulli numbers, we give Hurwitz type $\lambda$-zeta functions and Dirichlet's type $\lambda$-L-functions; which are interpolated $\lambda$-Bernoulli polynomials and generalized $\lambda$-Bernoulli numbers, respectively. We give generating function of $\lambda$-Bernoulli numbers with order r. By using Mellin transforms to their function, we prove relations between multiply zeta function and $\lambda$-Bernoulli polynomials and ordinary Bernoulli numbers of order r and $\lambda$-Bernoulli numbers, respectively. We also study on $\lambda$-Bernoulli numbers and polynomials in the space of locally constant. Moreover, we define $\lambda$-partial zeta function and interpolation function.

Eigenvalue Analysis of Double-span Timoshenko Beams by Pseudo spectral Method

  • Lee, Jin-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1753-1760
    • /
    • 2005
  • The pseudo spectral method is applied to the free vibration analysis of double-span Timoshenko beams. The analysis is based on the Chebyshev polynomials. Each section of the double-span beam has its own basis functions, and the continuity conditions at the intermediate support as well as the boundary conditions are treated separately as the constraints of the basis functions. Natural frequencies are provided for different thickness-to-length ratios and for different span ratios, which agree with those of Euler-Bernoulli beams when the thickness-to-length ratio is small but deviate considerably as the thickness-to-length ratio grows larger.

SIGNED A-POLYNOMIALS OF GRAPHS AND POINCARÉ POLYNOMIALS OF REAL TORIC MANIFOLDS

  • Seo, Seunghyun;Shin, Heesung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.467-481
    • /
    • 2015
  • Choi and Park introduced an invariant of a finite simple graph, called signed a-number, arising from computing certain topological invariants of some specific kinds of real toric manifolds. They also found the signed a-numbers of path graphs, cycle graphs, complete graphs, and star graphs. We introduce a signed a-polynomial which is a generalization of the signed a-number and gives a-, b-, and c-numbers. The signed a-polynomial of a graph G is related to the $Poincar\acute{e}$ polynomial $P_{M(G)}(z)$, which is the generating function for the Betti numbers of the real toric manifold M(G). We give the generating functions for the signed a-polynomials of not only path graphs, cycle graphs, complete graphs, and star graphs, but also complete bipartite graphs and complete multipartite graphs. As a consequence, we find the Euler characteristic number and the Betti numbers of the real toric manifold M(G) for complete multipartite graphs G.