DOI QR코드

DOI QR Code

SPECIAL VALUES AND INTEGRAL REPRESENTATIONS FOR THE HURWITZ-TYPE EULER ZETA FUNCTIONS

  • Hu, Su (Department of Mathematics South China University of Technology) ;
  • Kim, Daeyeoul (Department of Mathematics and Institute of Pure and Applied Mathematics Chonbuk National University) ;
  • Kim, Min-Soo (Division of Mathematics, Science, and Computers Kyungnam University)
  • Received : 2017.02.11
  • Accepted : 2017.09.05
  • Published : 2018.01.01

Abstract

The Hurwitz-type Euler zeta function is defined as a deformation of the Hurwitz zeta function: $${\zeta}_E(s,x)={\sum_{n=0}^{\infty}}{\frac{(-1)^n}{(n+x)^s}}$$. In this paper, by using the method of Fourier expansions, we shall evaluate several integrals with integrands involving Hurwitz-type Euler zeta functions ${\zeta}_E(s,x)$. Furthermore, the relations between the values of a class of the Hurwitz-type (or Lerch-type) Euler zeta functions at rational arguments have also been given.

Keywords

References

  1. M. Abramowitz and I. Stegun (eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications, Inc., New York, 1992.
  2. V. Adamchik, 32 representations for Catalan constant, Available at http://www.cs.cmu.edu/adamchik/articles/catalan/catalan.htm.
  3. T. M. Apostol, On the Lerch zeta function, Pacific J. Math. 1 (1951), 161-167. https://doi.org/10.2140/pjm.1951.1.161
  4. T. M. Apostol, Some series involving the Riemann zeta function, Proc. Amer. Math. Soc. 5 (1954), 239-243. https://doi.org/10.1090/S0002-9939-1954-0060534-0
  5. T. M. Apostol, Introduction to analytic number theory, Springer-Verlag, New York, 1976.
  6. R. Ayoub, Euler and the zeta function, Amer. Math. Monthly 81 (1974), 1067-1086. https://doi.org/10.1080/00029890.1974.11993738
  7. A. Bayad, Arithmetical properties of elliptic Bernoulli and Euler numbers, Int. J. Algebra 4 (2010), no. 5-8, 353-372.
  8. A. Bayad, Fourier expansions for Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, Math. Comp. 80 (2011), no. 276, 2219-2221. https://doi.org/10.1090/S0025-5718-2011-02476-2
  9. B. C. Berndt, Ramanujan's notebooks. Part I, Springer-Verlag, New York, 1985.
  10. J. Choi and H. M. Srivastava, The multiple Hurwitz zeta function and the multiple Hurwitz-Euler eta function, Taiwanese J. Math. 15 (2011), no. 2, 501-522. https://doi.org/10.11650/twjm/1500406218
  11. D. Cvijovic, Exponential and trigonometric sums associated with the Lerch zeta and Legendre chi functions, Comput. Math. Appl. 59 (2010), no. 4, 1484-1490. https://doi.org/10.1016/j.camwa.2010.01.026
  12. D. Cvijovic and J. Klinowski, New formulae for the Bernoulli and Euler polynomials at rational arguments, Proc. Amer. Math. Soc. 123 (1995), no. 5, 1527-1535. https://doi.org/10.1090/S0002-9939-1995-1283544-0
  13. K. Dilcher and C. Vignat, General convolution identities for Bernoulli and Euler polynomials, J. Math. Anal. Appl. 435 (2016), no. 2, 1478-1498. https://doi.org/10.1016/j.jmaa.2015.11.006
  14. E. Elizalde, Ten physical applications of spectral zeta functions, Lecture Notes in Physics. New Series m: Monographs, 35, Springer-Verlag, Berlin, 1995.
  15. O. Espinosa and V. H. Moll, On some integrals involving the Hurwitz zeta function. I, Ramanujan J. 6 (2002), no. 2, 159-188. https://doi.org/10.1023/A:1015706300169
  16. O. Espinosa and V. H. Moll, On some integrals involving the Hurwitz zeta function. II, Ramanujan J. 6 (2002), no. 4, 449-468. https://doi.org/10.1023/A:1021171500736
  17. I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, translated from the fourth Russian edition, fifth edition, translation edited and with a preface by Alan Jeffrey, Academic Press, Inc., Boston, MA, 1994.
  18. B. H. Gross, On the values of abelian L-functions at s = 0, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35 (1988), no. 1, 177-197.
  19. S. Hu and M.-S. Kim, The (S, {2})-Iwasawa theory, J. Number Theory 158 (2016), 73-89. https://doi.org/10.1016/j.jnt.2015.06.013
  20. S. Hu, D. Kim, and M.-S. Kim, On reciprocity formula of Apostol-Dedekind sum with quasi-periodic Euler functions, J. Number Theory 162 (2016), 54-67. https://doi.org/10.1016/j.jnt.2015.10.022
  21. M.-S. Kim and S. Hu, Sums of products of Apostol-Bernoulli numbers, Ramanujan J. 28 (2012), no. 1, 113-123. https://doi.org/10.1007/s11139-011-9340-z
  22. M.-S. Kim and S. Hu, On p-adic Hurwitz-type Euler zeta functions, J. Number Theory 132 (2012), no. 12, 2977-3015. https://doi.org/10.1016/j.jnt.2012.05.037
  23. M.-S. Kim and S. Hu, On p-adic Diamond-Euler log gamma functions, J. Number Theory 133 (2013), no. 12, 4233-4250. https://doi.org/10.1016/j.jnt.2013.06.012
  24. F. M. S. Lima, An Euler-type formula for ${\beta}$(2n) and closed-form expressions for a class of zeta series, Integral Transforms Spec. Funct. 23 (2012), no. 9, 649-657. https://doi.org/10.1080/10652469.2011.622274
  25. H.-L. Li, M. Hashimoto, and S. Kanemitsu, Examples of the Hurwitz transform, J. Math. Soc. Japan 61 (2009), no. 3, 651-660. https://doi.org/10.2969/jmsj/06130651
  26. H.-L. Li, M. Hashimoto, and S. Kanemitsu, The structural elucidation of Eisenstein's formula, Sci. China Math. 53 (2010), no. 9, 2341-2350. https://doi.org/10.1007/s11425-010-3086-8
  27. Q.-M. Luo, Fourier expansions and integral representations for the Apostol-Bernoulli and Apostol-Euler polynomials, Math. Comp. 78 (2009), no. 268, 2193-2208. https://doi.org/10.1090/S0025-5718-09-02230-3
  28. Q.-M. Luo, The multiplication formulas for the Apostol-Bernoulli and Apostol-Euler polynomials of higher order, Integral Transforms Spec. Funct. 20 (2009), no. 5-6, 377-391. https://doi.org/10.1080/10652460802564324
  29. I. Mezo, The Fourier series of the log-Barnes function, available on line at: http://arxiv.org/abs/1604.00753.
  30. M. Mikolas, A simple proof of the functional equation for the Riemann zeta-function and a formula of Hurwitz, Acta Sci. Math. Szeged 18 (1957), 261-263.
  31. J. Min, Zeros and special values of Witten zeta functions and Witten L-functions, J. Number Theory 134 (2014), 240-257. https://doi.org/10.1016/j.jnt.2013.07.010
  32. L. M. Navas, F. J. Ruiz, and J. L. Varona, Asymptotic estimates for Apostol-Bernoulli and Apostol-Euler polynomials, Math. Comp. 81 (2012), no. 279, 1707-1722. https://doi.org/10.1090/S0025-5718-2012-02568-3
  33. N. E. Norlund, Vorlesungen uber Differenzenrechnung, Springer-Verlag, Berlin, 1924.
  34. J. Sandor and B. Crstici, Handbook of number theory. II, Kluwer Academic Publishers, Dordrecht, 2004.
  35. M. A. Shpot, M. P. Chaudhary, and R. B. Paris, Integrals of products of Hurwitz zeta functions and the Casimir effect in ${\phi}^4$ field theories, J. Class. Anal. 9 (2016), no. 2, 99-115.
  36. J. Spanier and K. B. Oldham, An Atlas of Functions, Hemisphere Publishing Corp., 1987.
  37. H. M. Srivastava and J. Choi, Series associated with the zeta and related functions, Kluwer Academic Publishers, Dordrecht, 2001.
  38. K. Symanzik, Schrodinger representation and Casimir effect in renormalizable quantum field theory, Nuclear Phys. B 190 (1981), no. 1, FS 3, 1-44. https://doi.org/10.1016/0550-3213(81)90482-X
  39. K.Wang, Exponential sums of Lerch's zeta functions, Proc. Amer. Math. Soc. 95 (1985), no. 1, 11-15. https://doi.org/10.1090/S0002-9939-1985-0796438-5
  40. K. S. Williams and N. Y. Zhang, Special values of the Lerch zeta function and the evaluation of certain integrals, Proc. Amer. Math. Soc. 119 (1993), no. 1, 35-49. https://doi.org/10.1090/S0002-9939-1993-1172963-7