• Title/Summary/Keyword: Euler functions

Search Result 168, Processing Time 0.029 seconds

MATHEMATICAL CONSTANTS ASSOCIATED WITH THE MULTIPLE GAMMA FUNCTIONS

  • Jung, Myung-Ho;Cho, Young-Joon;Choi, June-Sang
    • East Asian mathematical journal
    • /
    • v.21 no.1
    • /
    • pp.77-103
    • /
    • 2005
  • The theory of multiple Gamma functions was studied in about 1900 and has, recently, been revived in the study of determinants of Laplacians. There is a class of mathematical constants involved naturally in the multiple Gamma functions. Here we summarize those mathematical constants associated with the Gamma and multiple Gamma functions and will show how they are involved, if possible.

  • PDF

CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION X8

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.257-264
    • /
    • 2012
  • Exton introduced 20 distinct triple hypergeometric functions whose names are $X_i$ (i = 1, ${\ldots}$, 20) to investigate their twenty Laplace integral representations whose kernels include the confluent hypergeometric functions $_0F_1$, $_1F_1$, a Humbert function ${\Psi}_1$, and a Humbert function ${\Phi}_2$. The object of this paper is to present 18 new integral representations of Euler type for the Exton hypergeometric function $X_8$, whose kernels include the Exton functions ($X_2$, $X_8$) itself, the Horn's function $H_4$, the Gauss hypergeometric function $F$, and Lauricella hypergeometric function $F_C$. We also provide a system of partial differential equations satisfied by $X_8$.

COEFFICIENT BOUNDS FOR CLOSE-TO-CONVEX FUNCTIONS ASSOCIATED WITH VERTICAL STRIP DOMAIN

  • Bulut, Serap
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.789-797
    • /
    • 2020
  • By considering a certain univalent function in the open unit disk 𝕌, that maps 𝕌 onto a strip domain, we introduce a new class of analytic and close-to-convex functions by means of a certain non-homogeneous Cauchy-Euler-type differential equation. We determine the coefficient bounds for functions in this new class. Relevant connections of some of the results obtained with those in earlier works are also provided.

CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION X5

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • Honam Mathematical Journal
    • /
    • v.32 no.3
    • /
    • pp.389-397
    • /
    • 2010
  • Exton introduced 20 distinct triple hypergeometric functions whose names are Xi (i = 1,$\ldots$, 20) to investigate their twenty Laplace integral representations whose kernels include the confluent hypergeometric functions $_0F_1$, $_1F_1$, a Humbert function $\Psi_2$, a Humbert function $\Phi_2$. The object of this paper is to present 25 (presumably new) integral representations of Euler types for the Exton hypergeometric function $X_5$ among his twenty $X_i$ (i = 1,$\ldots$, 20), whose kernels include the Exton function X5 itself, the Exton function $X_6$, the Horn's functions $H_3$ and $H_4$, and the hypergeometric function F = $_2F_1$.

CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION $X_2$

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • The Pure and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.347-354
    • /
    • 2010
  • Exton [Hypergeometric functions of three variables, J. Indian Acad. Math. 4 (1982), 113~119] introduced 20 distinct triple hypergeometric functions whose names are $X_i$ (i = 1, ..., 20) to investigate their twenty Laplace integral representations whose kernels include the confluent hypergeometric functions $_oF_1$, $_1F_1$, a Humbert function ${\Psi}_2$, a Humbert function ${\Phi}_2$. The object of this paper is to present 16 (presumably new) integral representations of Euler type for the Exton hypergeometric function $X_2$ among his twenty $X_i$ (i = 1, ..., 20), whose kernels include the Exton function $X_2$ itself, the Appell function $F_4$, and the Lauricella function $F_C$.

A NEW CLASS OF GENERALIZED APOSTOL-TYPE FROBENIUS-EULER-HERMITE POLYNOMIALS

  • Pathan, M.A.;Khan, Waseem A.
    • Honam Mathematical Journal
    • /
    • v.42 no.3
    • /
    • pp.477-499
    • /
    • 2020
  • In this paper, we introduce a new class of generalized Apostol-type Frobenius-Euler-Hermite polynomials and derive some explicit and implicit summation formulae and symmetric identities by using different analytical means and applying generating functions. These results extend some known summations and identities of generalized Frobenius-Euler type polynomials and Hermite-based Apostol-Euler and Apostol-Genocchi polynomials studied by Pathan and Khan, Kurt and Simsek.

A NOTE ON THE q-ANALOGUE OF KIM'S p-ADIC log GAMMA TYPE FUNCTIONS ASSOCIATED WITH q-EXTENSION OF GENOCCHI AND EULER NUMBERS WITH WEIGHT α

  • Araci, Serkan;Acikgoz, Mehmet;Park, Kyoung Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.583-588
    • /
    • 2013
  • In this paper, we introduce the $q$-analogue of $p$-adic log gamma functions with weight alpha. Moreover, we give a relationship between weighted $p$-adic $q$-log gamma functions and $q$-extension of Genocchi and Euler numbers with weight alpha.

FOUR LOGARITHMICALLY COMPLETELY MONOTONIC FUNCTIONS INVOLVING GAMMA FUNCTION

  • Qi, Feng;Niu, Da-Wei;Cao, Jian;Chen, Shou-Xin
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.559-573
    • /
    • 2008
  • In this paper, two classes of functions, involving a parameter and the classical Euler gamma function, and two functions, involving the classical Euler gamma function, are verified to be logarithmically completely monotonic in $(-\frac{1}{2},\infty)$ or $(0,\infty)$; some inequalities involving the classical Euler gamma function are deduced and compared with those originating from certain problems of traffic flow, due to J. Wendel and A. Laforgia, and relating to the well known Stirling's formula.

SOME IDENTITIES INVOLVING THE LEGENDRE'S CHI-FUNCTION

  • Choi, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.219-225
    • /
    • 2007
  • Since the time of Euler, the dilogarithm and polylogarithm functions have been studied by many mathematicians who used various notations for the dilogarithm function $Li_2(z)$. These functions are related to many other mathematical functions and have a variety of application. The main objective of this paper is to present corrected versions of two equivalent factorization formulas involving the Legendre's Chi-function $\chi_2$ and an evaluation of a class of integrals which is useful to evaluate some integrals associated with the dilogarithm function.