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SOME IDENTITIES RELATED TO THE EULER NUMBERS

AND POLYNOMIALS

DOUK SOO JANG

Abstract. In this note, we give a proof of the p-adic analogue of mild

generalization of classical zeta functions by modifying Osipov’s method. In
addition, we obtain some identities for the p-adic integration, from which,

some classical formulas for Euler numbers and polynomials have been de-
duced.
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1. Introduction and definitions

In this paper p will denote an odd rational prime number, Zp the ring of
p-adic integers, Qp the field of fractions of Zp, and Cp the p-adic completion

of the algebraic closure Qp. Let vp be the p-adic valuation of Cp normalized so

that |p|p = p−vp(p) = p−1. Let Z×
p be the multiplicative group of all p-adic units.

Divisibility and congruences are always understood within the ring of p-adic
integers, i.e., a | b iff vp(a) ≤ vp(b).

Let d be a fixed positive integer. We set Xd = lim←−n
(Z/dpnZ), the map from

Z/dplZ to Z/dpnZ for l ≥ n is a reduction mod dpn. For d = 1, X1 = Zp.
Let ℓ be a fixed positive integer. a, d and x will denote (a1, . . . , aℓ),(d1, . . . , dℓ)

and (x1, . . . , xℓ), respectively. For x = (x1, . . . , xℓ) and m = (m1, . . . ,mℓ) we
denote

xm = xm1
1 · · ·x

mℓ

ℓ , |x| = x1 + · · ·+ xℓ.

We set
Xd =

∏
di∈N

i=1,...,ℓ

Xdi
(1.1)

with the product topology, soXd is compact sinceXdi
is compact for i = 1, . . . , ℓ.
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Let d be the the point in Nℓ. We denote the polydisc as

a+ dphnZℓ
p = {x ∈ Qℓ

p | xi ≡ ai (mod dip
hini), i = 1, . . . , ℓ},

where a ∈ Qℓ
p and h, n ∈ Nℓ. The polydisc a + dphnZℓ

p is the product of discs

ai + dip
hiniZp for i = 1, . . . , k, that is, a+ dphnZℓ

p =
∏ℓ

i=1(ai + dip
hiniZp).

Definition 1.1 ([6, 11]). Let a+ dphnZℓ
p be a polydisc with a ∈ Qℓ

p and d ∈ Nℓ.
Let µi be a distribution on Zp for i = 1, . . . , ℓ. We define a formal direct product

of distributions µ(a) by µ(a+ dphnZℓ
p) =

∏ℓ
i=1 µi(ai + dip

hiniZp).

We use the symbols 0 ≤ a < dphn to denote 0 ≤ ai < dip
hini for each i. From

now on, when we write a+ dphnZℓ
p we will assume that 0 ≤ a < dphn.

Definition 1.2 ([6, p. 322]). Let f : Xd → Cp be any continuous function,
and it can be written as a uniform limit of locally constant function fi. For
n = (n1, . . . , nℓ) ∈ Nℓ, we will assume that n→∞ when n1 →∞, . . . , nℓ →∞.
Define∫

Xd

f(x)dµ(x) = lim
n→∞

∑
0≤a<dphn

f(a)µ(a+ dphnZℓ
p)

= lim
n1→∞

···
nℓ→∞

d1p
h1n1−1∑
a1=0

· · ·
dℓp

hℓnℓ−1∑
aℓ=0

f(a1, . . . , aℓ)µ(a1, . . . , aℓ)

(cf. [11], [14], [19] for a slightly different formulation).

Also, for any compact open subset O of Xd, the integral of f on O is defined
by ∫

O

f(x)dµ(x) =

∫
Xd

f(x) · (characteristic function of O) dµ(x)

(cf. [14, Chapter II]).

Definition 1.3. For i = 1, . . . , ℓ, let εi be roots of unity with order relatively
prime with p, and let εi ̸= 1 for each i. Set ε̃ = (ε1, . . . , εℓ). The higher order

Euler polynomials with parameter ε̃, H
(ℓ)
m (x, ε̃), are defined by

g
(ℓ)
ε̃ (t)ext =

∞∑
m=0

H(ℓ)
m (x, ε̃)

tm

m!
(1.2)

with the function

g
(ℓ)
ε̃ (t) =

ℓ∏
i=1

1− εi
1− εiet

. (1.3)

The values at x = 0 in (1.2), H
(ℓ)
m (0, ε̃), are called the higher order Euler

numbers with parameter ε̃; when ℓ = 1, the polynomials or numbers are called

ordinary. When ℓ = 1, Hm(x, ε) and Hm(ε) are denoted by H
(1)
m (x, ε) and

H
(1)
m (0, ε), respectively. If ℓ = 1 in (1.2), it is well known that the explicit
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representations for the ordinary Euler polynomials, complementing those given
in [18].

In Definition 1.3, when ε = (ε, . . . , ε) with a slight abuse of notation, the

higher order Euler polynomials with parameter ε, H
(ℓ)
m (x, ε), are defined by

g(ℓ)ε (t)ext =

∞∑
m=0

H(ℓ)
m (x, ε)

tm

m!
. (1.4)

Definition 1.4. Let x be a positive real number and εr = 1, ε ̸= 1. A mild
generalization of classical Riemann zeta function ζ(s) might be

ζℓ(s, x, ε) =
∑

0≤n<∞

ε|n|(x+ |n|)−s, (1.5)

which was defined by Barnes for Re(s) > ℓ and has a meromorphic continuation
to all s ∈ C except for simple poles at s = j (1 ≤ j ≤ ℓ) (for details see [2], [17],
[19]). We’ll want to do is to get rid of the terms 1/(x + |n|)s with |n| divisible
by p. Now define

ζ̃ℓ(s, x+ ℓ, ε) =
∑

1≤n<∞
(p,|n|)=1

ε|n|(x+ |n|)−s. (1.6)

From (1.6), we have

ζ̃ℓ(s, x+ ℓ, ε) = ζℓ(s, x+ ℓ, ε)− p−sζℓ

(
s,

x

p
+ ℓ, ε

)
. (1.7)

Hence

ζ̃ℓ(−m,x+ ℓ, ε) = ζℓ(−m,x+ ℓ, ε)− p−sζℓ

(
−m,

x

p
+ ℓ, ε

)
(1.8)

form ≥ 0.We note that ζℓ(s, x, ε) is also defined for ε = 1. Thus we set ζℓ(s, x) =
ζℓ(s, x, 1). The zeta function ζℓ(s, x, ε) is expressed as an integral,

Γ(s)ζℓ(s, x, ε) =

∫ ∞

0

e−xtts−1

(1− εe−t)ℓ
dt,

where Re(s) > ℓ and Γ(s) =
∫∞
0

ts−1e−tdt. The above expression gives us the
analytic continuation of ζℓ(s, x, ε) to the whole complex plane.

2. Some properties of the higher order Euler numbers and
polynomials

For a fixed ε̃ we adopt the following notations: f(t) = a0t
0 + a1t + · · · +

amtm + · · · , then

f(H(ℓ)(x, ε̃)) = a0H
(ℓ)
0 (x, ε̃) + a1H

(ℓ)
1 (x, ε̃) + · · ·+ amH(ℓ)

m (x, ε̃) + · · · . (2.1)

Thus, by (1.2) and (2.1), we have

g
(ℓ)
ε̃ (t) = eH

(ℓ)(ε̃)t, g
(ℓ)
ε̃ (t)ext = eH

(ℓ)(x,ε̃)t = e(H
(ℓ)(ε̃)+x)t. (2.2)
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So

H(ℓ)
m (x, ε̃) = (H(ℓ)(ε̃) + x)m =

m∑
i=0

(
m

i

)
H

(ℓ)
i (ε̃)xm−i, m ≥ 0. (2.3)

Theorem 2.1. If m is a nonnegative integer, then

H
(ℓ)
0 (ε̃) = 1, H

(ℓ)
m+1(ε̃) =

m∑
i=0

(
m

i

) i∑
j=0

(
i

j

)
H

(ℓ)
j (ε̃)

ℓ∑
n=1

εnHi−j(εn)

1− εn
.

Proof. Using (1.3) and (2.1), the derivative d
dt (g

(ℓ)
ε̃ (t)) of g

(ℓ)
ε̃ (t) is

d

dt
(g

(ℓ)
ε̃ (t)) =

ℓ∏
i=1

(1− εi)
d

dt
[(1− ε1e

t)−1 · · · (1− εℓe
t)−1]

=

ℓ∏
i=1

(1− εi)[ε1e
t(1− ε1e

t)−2 · · · (1− εℓe
t)−1

+ · · ·+ εℓe
t(1− ε1e

t)−1 · · · (1− εℓe
t)−2]

=

ℓ∏
i=1

1− εi
1− εiet

[
ε1

1− ε1et
+ · · ·+ εℓ

1− εℓet

]
et

= g
(ℓ)
ε̃ (t)

ℓ∑
n=1

e(H(εn)+1)t εn
1− εn

=

ℓ∑
n=1

e(H
(ℓ)(ε̃)+H(εn)+1)t εn

1− εn
.

Therefore we have

H
(ℓ)
m+1(ε̃) =

ℓ∑
n=1

(H(ℓ)(ε̃) +H(εn) + 1)m
εn

1− εn

=

ℓ∑
n=1

m∑
i=0

(
m

i

)
(H(ℓ)(ε̃) +H(εn))

i εn
1− εn

.

Since

(H(ℓ)(ε̃) +H(εn))
i =

i∑
j=0

(
i

j

)
H

(ℓ)
j (ε̃)Hi−j(εn),

so we have

H
(ℓ)
0 (ε̃) = 1, H

(ℓ)
m+1(ε̃) =

m∑
i=0

(
m

i

) i∑
j=0

(
i

j

)
H

(ℓ)
j (ε̃)

ℓ∑
n=1

εnHi−j(εn)

1− εn
(2.4)

for m ≥ 0. This completes the proof. □

From (2.4) (for ε = (ε, · · · , ε)) it follows that

H
(ℓ)
0 (ε) = 1, H

(ℓ)
m+1(ε) =

ℓε

1− ε

m∑
i=0

(
m

i

) i∑
j=0

(
i

j

)
H

(ℓ)
j (ε)Hi−j(ε). (2.5)
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For example, we have following some values of H
(ℓ)
m (ε) :

H
(ℓ)
1 (ε) =

−ℓε
ε− 1

, H
(ℓ)
2 (ε) =

ℓε+ ℓ2ε2

(ε− 1)2
, H

(ℓ)
3 (ε) =

−ℓε− ℓε2 − 3ℓ2ε2 − ℓ3ε3

(ε− 1)3
.

Recall that the higher order Bernoulli polynomials, B
(ℓ)
m (x), are defined by(

t

et − 1

)ℓ

ext =

∞∑
m=0

B(ℓ)
m (x)

tm

m!
= eB

(ℓ)(x)t, (2.6)

and B
(ℓ)
m (0) = B

(ℓ)
m , the higher order Bernoulli numbers. In particular, Bm =

B
(1)
m (0) is the ordinary Bernoulli numbers. Using (2.1) and (2.6), it is easily seen

that for any x

exteB
(ℓ)t = e(x+B(ℓ))t = eB

(ℓ)(x)t.

So

B(ℓ)
m (x) = (x+B(ℓ))m =

m∑
l=0

(
m

l

)
B

(ℓ)
l xm−l.

Theorem 2.2. If εr = 1 and ε ̸= 1, then

H(ℓ)
m (x, ε) =

1

rℓ
(ε− 1)ℓ

(m+ ℓ) · · · (m+ 1)

∑
0≤a<r

ε|a|(x+ |a|+ rB(ℓ))m+ℓ, m ≥ 0.

Proof. Let εr = 1, ε ̸= 1. Note that∑
0≤a<r

ε|a|(x+ |a|+ rB(ℓ))m = 0 for m = 0, . . . , ℓ− 1, (2.7)

by using
∑r−1

a=0 ε
a = 0. Using (2.1), (1.4) and (2.6), we see that

g(ℓ)ε (t)ext =
(ε− 1)ℓ

rℓ

∑
0≤a<r

ε|a|e(x+|a|)terB
(ℓ)t 1

tℓ

=

∞∑
m=0

 (ε− 1)ℓ

rℓ

∑
0≤a<r

ε|a|
(x+ |a|+ rB(ℓ))m+ℓ

(m+ ℓ) · · · (m+ 1)

 tm

m!
.

(2.8)

Comparing the coefficients of the terms tm/m! in (1.4) and (2.8), we obtain the
required result. □

Example 2.3. 1. For ℓ = 1 and m = 0, Theorem 2.2 gives us H0(x, ε) =
ε−1
r

∑r−1
a=0 ε

a(x+ a+ rB1). This means that

r

ε− 1
=

r−1∑
a=0

εaa

for εr = 1, ε ̸= 1, since H0(x, ε) = 1 and B1 = − 1
2 .
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2. Put m = 1 and ℓ = 2 in (2.7). Note that
∑r−1

a=0 ε
a = 0 and

∑r−1
a=0 aε

a ̸= 0.
Thus we have

r−1∑
a=0

ε|a|(x+ |a|+ rB(2))1 =

r−1∑
a1=0

r−1∑
a2=0

εa1+a2(x+ a1 + a2 + rB(2))

=

r−1∑
a1=0

εa1
1 a1

r−1∑
a2=0

εa2
1 +

r−1∑
a1=0

εa1
1

r−1∑
a2=0

εa2
1 a2

= 0.

3. p-adic Integral representations

Lemma 3.1 ([18]). Let εr = 1, ε ̸= 1 and (r, p) = 1. Then there exists h such
that r | (ph − 1), and

H0(ε) = 1, lim
n→∞

dphn−1∑
a=0

amεa =
1− εd

1− ε
Hm(ε), m ≥ 1.

For d = 1 in Lemma 3.1 we have [18, Eq. (19)]

lim
n→∞

phn−1∑
a=0

amεa = Hm(ε), m ≥ 1.

Lemma 3.2 ([14]). If f : Xd → Cp is a continuous function such that |f(x)|p ≤
A for all x ∈ Xd, and if |µ(O)|p ≤ B for all compact-open O ⊂ Xd, then
|
∫
fµ|p ≤ AB.

For each i, take a ri-th root of unity εi with εi ̸= 1, and set ε̃ = (ε1, . . . , εℓ).
Let ri be prime to p for all i. By Lemma 3.1, there exists hi such that ri | (phi−1),
e.g., one can take hi = φ(ri), where φ is the Euler function. For hi satisfying
ri | (phi − 1) we denote h = (h1, . . . , hℓ). Let’s define the measure µε̃ on Zℓ

p by
(cf. [13], [18, Eq. (16)])

µε̃(a) = µε̃(a+ dphnZℓ
p) = ε̃a, (3.1)

where 0 ≤ a < dphn and ε̃a = εa1
1 · · · ε

aℓ

ℓ . The measure µε̃ is Qp(ε̃)-valued.

Theorem 3.3. Let O be an open set in Cℓ
p with a+ dphnZℓ

p ⊂ Xd ⊂ O. B is a
Banach space over Cp and f : O → B is locally holomorphic. Define

Sd(n, h) =
∑

0≤a<dphn

f(a)µε̃(a),

where we are summing over all a = (a1, . . . , aℓ) as in Definition 1.2. We will
assume that n→∞ when n1 →∞, . . . , nℓ →∞. Then

(1) L = limn→∞ Sd(n, h) exists;
(2) L is dependent of the d used;
(3) L may be calculated by iteration of the limit in any order.
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Proof. Let f be holomorphic on O with Zℓ
p ⊂ O. Then we can write f(x) =∑

0≤m<∞ amx
m, where the right side represents a power series in k variables

with m running through the k-tuples of nonnegative integers. Thus am → 0.
From (1.2), (3.1) and Lemma 3.1 we have

lim
n→∞

Sd(n, h) = lim
n→∞

∑
0≤a<dphn

 ∑
0≤m<∞

am

 ε̃a

=

ℓ∏
i=1

1− εdi
i

1− εi

∑
0≤m<∞

amĤm(ε̃),

(3.2)

where Ĥm(ε̃) = Hm1
(ε1) · · ·Hmℓ

(εℓ). Note that |1− εi|p = 1 if (p, ri) ̸= 1, εi ̸= 1
and εrii = 1 (see [10, p.38, Lemma 2.10]). From Lemma 3.2, we obtain that
|Hmi

(εi)|p ≤ 1 for i = 1, . . . , ℓ, whence

|Ĥm(ε̃)|p =

ℓ∏
i=1

|Hmi
(εi)|p ≤ 1.

Thus
∑

0≤m<∞ amĤm(ε̃) converges. We can now conclude that

L = limn→∞ Sd(n, h) exists, but it is in fact dependent of d, as is shown in (3.2).
Part (3) follows immediately from (3.2). □

Namely, we’re in business as long as |x| ̸≡ 0 (mod p). Let Z×
p be the group of

p-adic units. To make all of our |x|’s in the domain of integration to have this
property, we must take {x ∈ Zℓ

p | |x| ∈ Z×
p } and {x ∈ Zℓ

p | |x| ∈ pZp}. It is easy to
see that∫

Zℓ
p

|x|∈Z×
p

(α+ |x|)mdµε̃(x) =

∫
Zℓ
p

(α+ |x|)mdµε̃(x)−
∫

Zℓ
p

|x|∈pZp

(α+ |x|)mdµε̃(x) (3.3)

(cf. [19, p.34]). Thus, we claim that the expression∫
Zℓ
p

|x|∈Z×
p

(α+ |x|)mdµε̃(x) (3.4)

can be interpolated.

Theorem 3.4 ([20, Theorem 3.6]). Let α be a positive integer with (p, α) ̸= 1.
Let Xp = Zp × (Z/(p− 1)Z). The function

−m 7−→ H(ℓ)
m (α, ε̃)− pmh

(ℓ)
p,ε̃

∑
0≤a<p

(p,|a|)̸=1

ε̃aH(ℓ)
m

(
α+ |a|

p
, ε̃p

)
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admits a continuation from the sense subset {0,−1, . . .} ⊂ Zp to a continuous
function ζp,ℓ(s, α, ε̃) : Xp → Qp(ε̃) and

ζp,ℓ(s, α, ε̃) =

∫
Zℓ
p

|x|∈Z×
p

(α+ |x|)−sdµε̃(x).

By (1.5), we have

ζℓ(−m,α, ε) =

(
d

dt

)m

eαt
∑

0≤n<∞

(εet)|n|
∣∣∣∣
t=0

=
1

(1− ε)ℓ

(
d

dt

)m

g(ℓ)ε (t)eαt
∣∣∣∣
t=0

for a nonnegative integer m. By (1.4), we obtain

ζℓ(−m,α, ε) = (1− ε)−ℓH(ℓ)
m (α, ε). (3.5)

Further by (2.6), it is known (cf. e.g., [12], [17], [19]) that

ζℓ(−m,α) = (−1)m((m+ ℓ) · · · (m+ 1))−1B
(ℓ)
m+ℓ(α) (3.6)

for m ≥ 0. From (1.5) and (1.6), it is also easy to see that

ζ̃ℓ(s, α, ε) = ζℓ(s, α, ε)− p−s
∑

0≤a<p
(p,α+|a|) ̸=1

εaζℓ

(
s,

α+ |a|
p

, εp
)
. (3.7)

It follows from (3.5) and (3.7) that

H(ℓ)
m (α, ε)− pmh(ℓ)

p,ε

∑
0≤a<p

(p,α+|a|)̸=1

εaH(ℓ)
m

(
α+ |a|

p
, εp

)

= (1− ε)ℓ

ζℓ(−m,α, ε)− pm
∑

0≤a<p
(p,α+|a|) ̸=1

εaζℓ

(
−m,

α+ |a|
p

, εp
)

= (1− ε)ℓζ̃ℓ(−m,α, ε),

(3.8)

where h
(ℓ)
p,ε = ((1− ε)/(1− εp))ℓ.

The statement follows from Theorem 3.4 and (3.7).

Theorem 3.5. The function −m → (1 − ε)ℓζ̃ℓ(−m,α, ε) admits a continua-
tion from the dense subset {0,−1,−2, . . .} ⊂ Xp to a continuous Qp(ε)-valued
function

ζp,ℓ(s, α, ε) =

∫
Zℓ
p

|x|∈Z×
p

(α+ |x|)−sdµε(x),

defined on Xp.
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Let εr = 1, ε ̸= 1 and let r > 1, (r, p) = 1, and r | (ph − 1). Then by (1.5), we
have

εα
∑
εr=1
ε ̸=1

ζ̃ℓ(s, α, ε) =

{
(1− p−s)

∑
0≤a<∞

1
(α+|n|)s (r − 1), r | (α+ |n|)

−(1− p−s)
∑

0≤a<∞
1

(α+|n|)s , otherwise

= (1− p−s)(r1−s − 1)ζℓ(s, α)

for Re(s) > k. From the uniqueness of the analytic representation it follows that∑
εr=1
ε ̸=1

ζ̃ℓ(s, α, ε) = ε−α(1− p−s)(r1−s − 1)ζℓ(s, α). (3.9)

which is valid for all s ∈ C. Setting s = −1,−2, . . . in (3.9) and making use
of (3.6) and (3.8), we obtain an identity which connects the higher order Euler

numbers H
(ℓ)
m (α, ε) with the higher order Bernoulli numbers B

(ℓ)
m+k(α) :

∑
εr=1
ε ̸=1

εα

(1− ε)ℓ

H(ℓ)
m (α, ε)− pmh(ℓ)

p,ε

∑
0≤a<p

(p,α+|a|) ̸=1

εaH(ℓ)
m

(
α+ |a|

p
, εp

)
= (−1)ℓ((m+ ℓ) · · · (m+ 1))−1(1− pm)(r1+m − 1)B

(ℓ)
m+ℓ(α).

(3.10)

From Theorem 3.4 and Theorem 3.5, and the relation (3.9) we have the fol-
lowing result.

Theorem 3.6. There exists a continuous extension of the function

εx(1− p−s)(r1−s − 1)ζℓ(s, x)

from the dense subset {0,−1,−2, . . .} to the entire Xp as well as an integral
representation

ζp,ℓ(s, x) =
1

εx(r1−s − 1)

∫
Zℓ
p

|x|∈Z×
p

(x+ |x|)−sdµ(x),

where µ =
∑

εr=1,ε ̸=1 ε
αµε/(1− ε)ℓ.
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