• Title/Summary/Keyword: Euler Bernoulli

Search Result 523, Processing Time 0.03 seconds

Numerical solution of beam equation using neural networks and evolutionary optimization tools

  • Babaei, Mehdi;Atasoy, Arman;Hajirasouliha, Iman;Mollaei, Somayeh;Jalilkhani, Maysam
    • Advances in Computational Design
    • /
    • v.7 no.1
    • /
    • pp.1-17
    • /
    • 2022
  • In this study, a new strategy is presented to transmit the fundamental elastic beam problem into the modern optimization platform and solve it by using artificial intelligence (AI) tools. As a practical example, deflection of Euler-Bernoulli beam is mathematically formulated by 2nd-order ordinary differential equations (ODEs) in accordance to the classical beam theory. This fundamental engineer problem is then transmitted from classic formulation to its artificial-intelligence presentation where the behavior of the beam is simulated by using neural networks (NNs). The supervised training strategy is employed in the developed NNs implemented in the heuristic optimization algorithms as the fitness function. Different evolutionary optimization tools such as genetic algorithm (GA) and particle swarm optimization (PSO) are used to solve this non-linear optimization problem. The step-by-step procedure of the proposed method is presented in the form of a practical flowchart. The results indicate that the proposed method of using AI toolsin solving beam ODEs can efficiently lead to accurate solutions with low computational costs, and should prove useful to solve more complex practical applications.

Dynamic characteristics of viscoelastic nanobeams including cutouts

  • Rabab A. Shanab;Norhan A. Mohamed;Mohamed A. Eltaher;Alaa A. Abdelrahman
    • Advances in nano research
    • /
    • v.14 no.1
    • /
    • pp.45-65
    • /
    • 2023
  • This paper aimed to investigate the nonclassical size dependent free vibration behavior of regularly squared cutout viscoelastic nanobeams. The nonlocal strain gradient elasticity theory is modified and adopted to incorporate the viscoelasticity effect. The Kelvin Voigt viscoelastic model is adopted to model the linear viscoelastic constitutive response. To explore the influence of shear deformation effect due to cutout, both Euler Bernoulli and Timoshenko beams theories are considered. The Hamilton principle is utilized to derive the dynamic equations of motion incorporating viscoelasticity and size dependent effects. Closed form solutions for the resonant frequencies for both perforated Euler Bernoulli nanobeams (PEBNB) and perforated Timoshenko nanobeams (PTNB) are derived considering different boundary conditions. The developed procedure is verified by comparing the obtained results with the available results in the literature. Parametric studies are conducted to show the influence of the material damping, the perforation, the material and the geometrical parameters as well as the boundary and loading conditions on the dynamic behavior of viscoelastic perforated nanobeams. The proposed procedure and the obtained results are supportive in the analysis and design of perforated viscoelastic NEMS structures.

Buckling behavior of intermediate filaments based on Euler Bernoulli and Timoshenko beam theories

  • Muhammad Taj;Muzamal Hussain;Mohamed A. Khadimallah;Muhammad Safeer;S.R. Mahmoud;Zafer Iqbal;Mohamed R. Ali;Aqib Majeed;Abdelouahed Tounsi;Manzoor Ahmad
    • Advances in concrete construction
    • /
    • v.15 no.3
    • /
    • pp.171-178
    • /
    • 2023
  • Cytoskeleton components play key role in maintaining cell structure and in giving shape to the cell. These components include microtubules, microfilaments and intermediate filaments. Among these filaments intermediate filaments are the most rigid and bear large compressive force. Actually, these filaments are surrounded by other filaments like microtubules and microfilaments. This network of filaments makes a layer as a surface on intermediate filaments that have great impact on buckling behavior of intermediate filaments. In the present article, buckling behavior of intermediate filaments is studied by taking into account the effects of surface by using Euler Bernoulli and Timoshenko beam theories. It is found that effects of surface greatly affect the critical buckling force of intermediate filaments. Further, it is observed that the critical buckling force is inversely proportional to the length of filament. Such types of observations are helpful for further analysis of nanofibrous in their actual environments within the cell.

Effects of nonlocal parameter on bending of Intermediate filaments: Formulation of Euler beam theory

  • Taj, Muhammad;Hussain, Muzamal;Khadimallah, Mohamed A.;Baili, Jamel;Khedher, Khaled Mohamed;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • v.12 no.6
    • /
    • pp.491-497
    • /
    • 2021
  • Cell components play vital role within the cell when the cell under goes deformation. These components are microtubules, microfilaments and intermediate filaments. Intermediate filaments are like thread and are of different types. Like microtubules and microfilaments these components also undergo the deformation and their dynamics affected when change occurs within cell. In the present study, bending of intermediate filaments are studied keeping the nonlocal effects under consideration. It is observed that the nonlocal parameter has a great impact on the dynamics of intermediate filaments. This study is made by the application of Euler beam theory.

Free Vibrations of Compressive Members Resting on Linear Elastic Foundation (선형 탄성지반 위에 놓인 압축부재의 자유진동)

  • 이병구;이광범;모정만;신성철
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.6
    • /
    • pp.122-129
    • /
    • 2000
  • The purpose of this study is to investigate both the fundamental and some higher natural frequencies and mode shapes of compressive members resting on the linear elastic foundation. The model of compressive member is based on the classical Bernoulli-Euler beam theory. The differential equation governing free vibrations of such members subjected to an axial load is derived and solved numerically for calculating the natural frequencies and mode shapes. The Improved Euler method is used to integrate the differential equation and the Determinant Search method combined with the Regula-Falsi method to determine the natural frequencies, respectively. In numerical examples, the hinged-hinged, hinged-clamped, clamped-hinged and clamped-clamped end constraints are considered. The convergence analysis is conducted for determining the available step size in the Improved Euler method. The validation of theories developed herein is also conducted by comparing the numerical results between this study and SAP 90. The non-dimensional frequency parameters are presented as the non-dimensional system parameters: section ratio, modulus parameter and load parameter. Also typical mode shapes are presented.

  • PDF

A Performance Evaluation of Beam Finite Elements with Higher-order Derivatives' Continuity (고차미분 연속성을 가지는 유한요소 보 모델들에 대한 성능평가)

  • Lee, Gijun;Kim, Jun-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.335-341
    • /
    • 2017
  • In this paper, beam finite elements with higher-order derivatives' continuity are formulated and evaluated for various boundary conditions. All the beam elements are based on Euler-Bernoulli beam theory. These higher-order beam elements are often required to analyze structures by using newly developed higher-order beam theories and/or non-classical beam theories based on nonlocal elasticity. It is however rare to assess the performance of such elements in terms of boundary and loading conditions. To this end, two higher-order beam elements are formulated, in which $C^2$ and $C^3$ continuities of the deflection are enforced, respectively. Three different boundary conditions are then applied to solve beam structures, such as cantilever, simply-support and clamped-hinge conditions. In addition to conventional Euler-Bernoulli beam boundary conditions, the effect of higher-order boundary conditions is investigated. Depending on the boundary conditions, the oscillatory behavior of deflections is observed. Especially the geometric boundary conditions are problematic, which trigger unstable solutions when higher-order deflections are prescribed. It is expected that the results obtained herein serve as a guideline for higher-order derivatives' continuous finite elements.

Surface effects on flutter instability of nanorod under generalized follower force

  • Xiao, Qiu-Xiang;Zou, Jiaqi;Lee, Kang Yong;Li, Xian-Fang
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.723-730
    • /
    • 2017
  • This paper studies on dynamic and stability behavior of a clamped-elastically restrained nanobeam under the action of a nonconservative force with an emphasis on the influence of surface properties on divergence and flutter instability. Using the Euler-Bernoulli beam theory incorporating surface effects, a governing equation for a clamped-elastically restrained nanobeam is derived according to Hamilton's principle. The characteristic equation is obtained explicitly and the force-frequency interaction curves are displayed to show the influence of the surface effects, spring stiffness of the elastic restraint end on critical loads including divergence and flutter loads. Divergence and flutter instability transition is analyzed. Euler buckling and stability of Beck's column are some special cases of the present at macroscale.

SEVERAL RESULTS ASSOCIATED WITH THE RIEMANN ZETA FUNCTION

  • Choi, Junesang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.467-480
    • /
    • 2009
  • In 1859, Bernhard Riemann, in his epoch-making memoir, extended the Euler zeta function $\zeta$(s) (s > 1; $s{\in}\mathbb{R}$) to the Riemann zeta function $\zeta$(s) ($\Re$(s) > 1; $s{\in}\mathbb{C}$) to investigate the pattern of the primes. Sine the time of Euler and then Riemann, the Riemann zeta function $\zeta$(s) has involved and appeared in a variety of mathematical research subjects as well as the function itself has been being broadly and deeply researched. Among those things, we choose to make a further investigation of the following subjects: Evaluation of $\zeta$(2k) ($k {\in}\mathbb{N}$); Approximate functional equations for $\zeta$(s); Series involving the Riemann zeta function.

  • PDF

Analytical wave dispersion modeling in advanced piezoelectric double-layered nanobeam systems

  • Ebrahimi, F.;Haghi, P.;Dabbagh, A.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.175-183
    • /
    • 2018
  • This research deals with the wave dispersion analysis of functionally graded double-layered nanobeam systems (FG-DNBSs) considering the piezoelectric effect based on nonlocal strain gradient theory. The nanobeam is modeled via Euler-Bernoulli beam theory. Material properties are considered to change gradually along the nanobeams' thickness on the basis of the rule of mixture. By implementing a Hamiltonian approach, the Euler-Lagrange equations of piezoelectric FG-DNBSs are obtained. Furthermore, applying an analytical solution, the dispersion relations of smart FG-DNBSs are derived by solving an eigenvalue problem. The effects of various parameters such as nonlocality, length scale parameter, interlayer stiffness, applied electric voltage, relative motions and gradient index on the wave dispersion characteristics of nanoscale beam have been investigated. Also, validity of reported results is proven in the framework of a diagram showing the convergence of this model's curve with that of a previous published attempt.