DOI QR코드

DOI QR Code

Analytical wave dispersion modeling in advanced piezoelectric double-layered nanobeam systems

  • Ebrahimi, F. (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University) ;
  • Haghi, P. (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University) ;
  • Dabbagh, A. (School of Mechanical Engineering, College of Engineering, University of Tehran)
  • Received : 2018.03.10
  • Accepted : 2018.05.08
  • Published : 2018.07.25

Abstract

This research deals with the wave dispersion analysis of functionally graded double-layered nanobeam systems (FG-DNBSs) considering the piezoelectric effect based on nonlocal strain gradient theory. The nanobeam is modeled via Euler-Bernoulli beam theory. Material properties are considered to change gradually along the nanobeams' thickness on the basis of the rule of mixture. By implementing a Hamiltonian approach, the Euler-Lagrange equations of piezoelectric FG-DNBSs are obtained. Furthermore, applying an analytical solution, the dispersion relations of smart FG-DNBSs are derived by solving an eigenvalue problem. The effects of various parameters such as nonlocality, length scale parameter, interlayer stiffness, applied electric voltage, relative motions and gradient index on the wave dispersion characteristics of nanoscale beam have been investigated. Also, validity of reported results is proven in the framework of a diagram showing the convergence of this model's curve with that of a previous published attempt.

Keywords

References

  1. Alibeigloo, A. and Liew, K.M. (2015), "Elasticity solution of free vibration and bending behavior of functionally graded carbon nanotube-reinforced composite beam with thin piezoelectric layers using differential quadrature method", Int. J. Appl. Mech., 7(1), 1550002. https://doi.org/10.1142/S1758825115400025
  2. Ansari, R., Oskouie, M.F., Gholami, R. and Sadeghi, F. (2016), "Thermo-electro-mechanical vibration of postbuckled piezoelectric Timoshenko nanobeams based on the nonlocal elasticity theory", Compos. Part B: Eng., 89, 316-327. https://doi.org/10.1016/j.compositesb.2015.12.029
  3. Asemi, S.R., Farajpour, A., Asemi, H.R. and Mohammadi, M. (2014), "Influence of initial stress on the vibration of doublepiezoelectric-nanoplate systems with various boundary conditions using DQM", Phys. E: Low-Dimens. Syst. Nanostruct., 63, 169-179. https://doi.org/10.1016/j.physe.2014.05.009
  4. Baltacioglu, A.K., Akgoz, B. and Civalek, O. (2010), "Nonlinear static response of laminated composite plates by discrete singular convolution method", Compos. Struct., 93(1), 153-161. https://doi.org/10.1016/j.compstruct.2010.06.005
  5. Barati, M.R. (2017), "On wave propagation in nanoporous materials", Int. J. Eng. Sci., 116, 1-11. https://doi.org/10.1016/j.ijengsci.2017.03.007
  6. Chakraborty, A., Gopalakrishnan, S. and Reddy, J.N. (2003), "A new beam finite element for the analysis of functionally graded materials", Int. J. Mech. Sci., 45(3), 519-539. https://doi.org/10.1016/S0020-7403(03)00058-4
  7. Civalek, O. (2013), "Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches", Compos. Part B: Eng., 50, 171-179. https://doi.org/10.1016/j.compositesb.2013.01.027
  8. Ebrahimi, F. and Barati, M.R. (2016), "Electromechanical buckling behavior of smart piezoelectrically actuated higherorder size-dependent graded nanoscale beams in thermal environment", Int. J. Smart Nano Mater., 7(2), 69-90. https://doi.org/10.1080/19475411.2016.1191556
  9. Ebrahimi, F. and Barati, M.R. (2016), "Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory", Appl. Phys. A., 122(9), 843. https://doi.org/10.1007/s00339-016-0368-1
  10. Ebrahimi, F. and Barati, M.R. (2017), "Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium", J. Braz. Soc. Mech. Sci. Eng., 39(3), 937-952. https://doi.org/10.1007/s40430-016-0551-5
  11. Ebrahimi, F. and Barati, M.R. (2017), "Damping vibration analysis of smart piezoelectric polymeric nanoplates on viscoelastic substrate based on nonlocal strain gradient theory", Smart Mater. Struct., 26(6), 065018. https://doi.org/10.1088/1361-665X/aa6eec
  12. Ebrahimi, F. and Barati, M.R. (2017), "Vibration analysis of graphene sheets resting on the orthotropic elastic medium subjected to hygro-thermal and in-plane magnetic fields based on the nonlocal strain gradient theory", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 0954406217720232.
  13. Ebrahimi, F. and Dabbagh, A. (2017), "Nonlocal strain gradient based wave dispersion behavior of smart rotating magnetoelectro-elastic nanoplates", Mater. Res. Expr., 4(2), 025003. https://doi.org/10.1088/2053-1591/aa55b5
  14. Ebrahimi, F. and Dabbagh, A. (2017), "Wave propagation analysis of smart rotating porous heterogeneous piezo-electric nanobeams", Eur. Phys. J. Plus, 132(4), 153. https://doi.org/10.1140/epjp/i2017-11366-3
  15. Ebrahimi, F. and Salari, E. (2015), "Size-dependent thermoelectrical buckling analysis of functionally graded piezoelectric nanobeams", Smart Mater. Struct., 24(12), 125007. https://doi.org/10.1088/0964-1726/24/12/125007
  16. Ebrahimi, F. and Salari, E. (2016), "Analytical modeling of dynamic behavior of piezo-thermo-electrically affected sigmoid and power-law graded nanoscale beams", Appl. Phys. A, 122(9), 793. https://doi.org/10.1007/s00339-016-0273-7
  17. Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008
  18. Ebrahimi, F., Barati, M.R. and Haghi, P. (2016), "Nonlocal thermo-elastic wave propagation in temperature-dependent embedded small-scaled nonhomogeneous beams", Eur. Phys. J. Plus, 131(11), 383. https://doi.org/10.1140/epjp/i2016-16383-0
  19. Ebrahimi, F., Barati, M.R. and Haghi, P. (2017), "Thermal effects on wave propagation characteristics of rotating strain gradient temperature-dependent functionally graded nanoscale beams", J. Therm. Stress., 40(5), 535-547. https://doi.org/10.1080/01495739.2016.1230483
  20. Elshafei, M.A. and Alraiess, F. (2013), "Modeling and analysis of smart piezoelectric beams using simple higher order shear deformation theory", Smart Mater. Struct., 22(3), 035006. https://doi.org/10.1088/0964-1726/22/3/035006
  21. Eringen, A.C. (1972), "Linear theory of nonlocal elasticity and dispersion of plane waves", Int. J. Eng. Sci., 10(5), 425-435. https://doi.org/10.1016/0020-7225(72)90050-X
  22. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  23. Farajpour, A., Yazdi, M.H., Rastgoo, A. and Mohammadi, M. (2016), "A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment", Acta Mech., 227(7), 1849-1867. https://doi.org/10.1007/s00707-016-1605-6
  24. Fleck, N.A. and Hutchinson, J.W. (1993), "A phenomenological theory for strain gradient effects in plasticity", J. Mech. Phys. Sol., 41(12), 1825-1857. https://doi.org/10.1016/0022-5096(93)90072-N
  25. Fotouhi, M.M., Firouz-Abadi, R.D. and Haddadpour, H. (2013), "Free vibration analysis of nanocones embedded in an elastic medium using a nonlocal continuum shell model", Int. J. Eng. Sci., 64, 14-22. https://doi.org/10.1016/j.ijengsci.2012.12.003
  26. Javaheri, R. and Eslami, M.R. (2002), "Thermal buckling of functionally graded plates based on higher order theory", J. Therm. Stress., 25(7), 603-625. https://doi.org/10.1080/01495730290074333
  27. Ke, L.L., Wang, Y.S. and Wang, Z.D. (2012), "Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory", Compos. Struct., 94(6), 2038-2047. https://doi.org/10.1016/j.compstruct.2012.01.023
  28. Koizumi, M. and Niino, M. (1995), "Overview of FGM research in Japan", Mrs Bullet., 20(1), 19-21.
  29. Li, L. and Hu, Y. (2015), "Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory", Int. J. Eng. Sci., 97, 84-94. https://doi.org/10.1016/j.ijengsci.2015.08.013
  30. Li, L., Hu, Y. and Ling, L. (2015), "Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory", Compos. Struct., 133, 1079-1092. https://doi.org/10.1016/j.compstruct.2015.08.014
  31. Li, L., Hu, Y. and Ling, L. (2016), "Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory", Phys. E: Low-Dimens. Syst. Nanostruct., 75, 118-124. https://doi.org/10.1016/j.physe.2015.09.028
  32. Li, L., Tang, H. and Hu, Y. (2018), "The effect of thickness on the mechanics of nanobeams", Int. J. Eng. Sci., 123, 81-91. https://doi.org/10.1016/j.ijengsci.2017.11.021
  33. Liang, X. and Shen, S. (2011), "Effect of electrostatic force on a piezoelectric nanobeam", Smart Mater. Struct., 21(1), 015001. https://doi.org/10.1088/0964-1726/21/1/015001
  34. Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Sol., 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001
  35. Liu, C., Ke, L.L., Wang, Y.S. and Yang, J. (2015), "Nonlinear vibration of nonlocal piezoelectric nanoplates", Int. J. Struct. Stab. Dyn., 15(8), 1540013. https://doi.org/10.1142/S0219455415400131
  36. Liu, C., Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014), "Buckling and post-buckling of size-dependent piezoelectric Timoshenko nanobeams subject to thermo-electro-mechanical loadings", Int. J. Struct. Stab. Dyn., 14(3), 1350067. https://doi.org/10.1142/S0219455413500673
  37. Mahinzare, M., Mohammadi, K., Ghadiri, M. and Rajabpour, A. (2017), "Size-dependent effects on critical flow velocity of a SWCNT conveying viscous fluid based on nonlocal strain gradient cylindrical shell model", Microflu. Nanoflu., 21(7), 123. https://doi.org/10.1007/s10404-017-1956-x
  38. Mareishi, S., Rafiee, M., He, X.Q. and Liew, K.M. (2014), "Nonlinear free vibration, postbuckling and nonlinear static deflection of piezoelectric fiber-reinforced laminated composite beams", Compos. Part B: Eng., 59, 123-132. https://doi.org/10.1016/j.compositesb.2013.11.017
  39. Mercan, K. and Civalek, O. (2016), "DSC method for buckling analysis of boron nitride nanotube (BNNT) surrounded by an elastic matrix", Compos. Struct., 143, 300-309. https://doi.org/10.1016/j.compstruct.2016.02.040
  40. Naderi, A. and Saidi, A.R. (2014), "Nonlocal postbuckling analysis of graphene sheets in a nonlinear polymer medium", Int. J. Eng. Sci., 81, 49-65. https://doi.org/10.1016/j.ijengsci.2014.04.004
  41. Narendar, S. and Gopalakrishnan, S. (2009), "Nonlocal scale effects on wave propagation in multi-walled carbon nanotubes", Comput. Mater. Sci., 47(2), 526-538. https://doi.org/10.1016/j.commatsci.2009.09.021
  42. Phung-Van, P., De Lorenzis, L., Thai, C.H., Abdel-Wahab, M. and Nguyen-Xuan, H. (2015), "Analysis of laminated composite plates integrated with piezoelectric sensors and actuators using higher-order shear deformation theory and isogeometric finite elements", Comput. Mater. Sci., 96, 495-505. https://doi.org/10.1016/j.commatsci.2014.04.068
  43. Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
  44. Reddy, J.N. and El-Borgi, S. (2014), "Eringen's nonlocal theories of beams accounting for moderate rotations", Int. J. Eng. Sci., 82, 159-177. https://doi.org/10.1016/j.ijengsci.2014.05.006
  45. Stolken, J.S. and Evans, A.G. (1998), "A microbend test method for measuring the plasticity length scale", Acta Mater., 46(14), 5109-5115. https://doi.org/10.1016/S1359-6454(98)00153-0
  46. Wang, Q. (2002), "On buckling of column structures with a pair of piezoelectric layers", Eng. Struct., 24(2), 199-205. https://doi.org/10.1016/S0141-0296(01)00088-8
  47. Wang, Q., Quek, S.T., Sun, C.T. and Liu, X. (2001), "Analysis of piezoelectric coupled circular plate", Smart Mater Struct., 10(2), 229. https://doi.org/10.1088/0964-1726/10/2/308
  48. Xu, Y. and Zhou, D. (2011), "Two-dimensional analysis of simply supported piezoelectric beams with variable thickness", Appl. Math. Model., 35(9), 4458-4472. https://doi.org/10.1016/j.apm.2011.03.012
  49. Yan, Z. and Jiang, L.Y. (2011), "The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects", Nanotech., 22(24), 245703. https://doi.org/10.1088/0957-4484/22/24/245703
  50. Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Sol. Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
  51. Yang, Y., Zhang, L. and Lim, C.W. (2011), "Wave propagation in double-walled carbon nanotubes on a novel analytically nonlocal Timoshenko-beam model", J. Sound Vibr., 330(8), 1704-1717. https://doi.org/10.1016/j.jsv.2010.10.028
  52. Zang, J., Fang, B., Zhang, Y.W., Yang, T.Z. and Li, D.H. (2014), "Longitudinal wave propagation in a piezoelectric nanoplate considering surface effects and nonlocal elasticity theory", Phys. E: Low-Dimens. Syst. Nanostruct., 63, 147-150. https://doi.org/10.1016/j.physe.2014.05.019
  53. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: An assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
  54. Zenkour, A.M. (2013), "A simple four-unknown refined theory for bending analysis of functionally graded plates", Appl. Math. Model., 37(20), 9041-9051. https://doi.org/10.1016/j.apm.2013.04.022
  55. Zenkour, A.M. and Sobhy, M. (2010), "Thermal buckling of various types of FGM sandwich plates", Compos. Struct., 93(1), 93-102. https://doi.org/10.1016/j.compstruct.2010.06.012
  56. Zhang, L.L., Liu, J.X., Fang, X.Q. and Nie, G.Q. (2014), "Sizedependent dispersion characteristics in piezoelectric nanoplates with surface effects", Phys. E: Low-Dimens. Syst. Nanostruct., 57, 169-174. https://doi.org/10.1016/j.physe.2013.11.007