• Title/Summary/Keyword: wave propagation

Search Result 1,976, Processing Time 0.033 seconds

Optimal Wave Source Position Determination Based on Wave Propagation Simulation (전자파 영향 평가를 통한 최적의 전파 기지국 위치 결정 방법)

  • 박성헌;박지헌
    • Korean Management Science Review
    • /
    • v.18 no.1
    • /
    • pp.41-54
    • /
    • 2001
  • In this paper, we proposed a method to determine optimal wave source for mobile telephone communication. The approach is based on wave propagation simulation. Given a wave source we can determine wave propagation effects on every surfaces of wave simulation environment. The effect is evaluated as a cost function while the source’s position x, y, z work as variables for a parameter optimization. Wave propagated 3 dimensional space generates reflected waves whenever it hits boundary surface, it receives multiple waves which are reflected from various boundary surfacers in space. Three algorithms being implemented in this paper are based on a raytracing theory. If we get 3 dimensional geometry input as well as wave sources, we can compute wave propagation effects all over the boundary surfaces. In this paper, we present a new approach to compute wave propagation. First approach is tracing wave from a source. Source is modeled as a sphere casting vectors into various directions. This approach has limit in computing necessary wave propagation effects on all terrain surfaces. The second approach proposed is tracing wave backwards : tracing from a wave receiver to a wave source. For this approach we need to allocate a wave receiver on every terrain surfaces modeled, which requires enormous amount of computing time. But the second approach is useful for indoor wave propagation simulation. The last approach proposed in this paper is tracing sound by geometric computation. We allow direct, 1-relfe tion, and 2-reflection propagation. This approach allow us to save in computation time while achieving reasonable results. but due to the reflection limitaion, this approach works best in outdoor environment.

  • PDF

Elastic Wave Propagation in Jointed Rock Mass (절리암반에서의 탄성파 전파 특성)

  • Cha, Min-Su;Cho, Gye-Chun;Baak, Seung-Hyoung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.515-520
    • /
    • 2005
  • The behavior of jointed rock mass is much different from that of intact rock due to the presence of joints. Similarly, the characteristics of elastic wave propagation in jointed rock are considerably different from those of intact rock. The propagation of elastic waves in jointed rock is greatly dependent on the state of stress. The roughness, filling materials, and spacing of joints also affect wave propagation in jointed rock. If the wavelength of elastic waves is much larger than the spacing between joints, wave propagation in jointed rock mass can be considered as wave propagation in equivalent continuum. A rock resonant column testing apparatus is made to measure elastic waves propagating through jointed rock in the state of equivalent continuum. Three types of wave, i.e, torsional, longitudinal and flexural waves are monitored during rock resonant column tests. Various roughness and filling materials are applied to joints, and rock columns with various spacings are used to understand how these factors affect wave propagation under a small strain condition. The experimental results suggest that the characteristics of wave propagation in jointed rock mass are governed by the state of stress and influenced by roughness, filling materials and joint spacings.

  • PDF

Theoretical and numerical analysis of the influence of initial stress gradient on wave propagations

  • Tao, Ming;Chen, Zhenghong;Li, Xibing;Zhao, Huatao;Yin, TuBing
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.285-296
    • /
    • 2016
  • The investigation of stress wave propagation in a medium with initial stress has very important application in the field of engineering. However, the previous research less consider the influence of initial stress gradient on wave propagation. In the present paper, the governing equation of wave propagation in elastic continuum material with inhomogeneous initial stress is derived, which indicated that the inhomogeneous initial stress changed the governing equation of wave propagation. Additionally, the definite problem of wave propagation in material with initial stress gradient is verified by using mathematical physics method. Based on the definite problem, the elastic displacement-time relationship of wave propagation is explored, which indicated that the inhomogeneous initial stress changed waveform and relationship of displacement-time histories. Furthermore, the spall process of blasting wave propagation from underground to earth surface is simulated by using LS-DYNA.

The influence of initial stress on wave propagation and dynamic elastic coefficients

  • Li, Xibing;Tao, Ming
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.377-390
    • /
    • 2015
  • The governing equations of wave propagation in one dimension of elastic continuum materials are investigated by taking the influence of the initial stress into account. After a short review of the theory of elastic wave propagation in a rock mass with an initial stress, results indicate that the initial stress differentially influences P-wave and S-wave propagation. For example, when the initial stress is homogeneous, for the P-wave, the initial stress only affects the magnitude of the elastic coefficients, but for the S-wave, the initial stress not only influences the elastic coefficients but also changes the governing equation of wave propagation. In addition, the P-wave and S-wave velocities were measured for granite samples at a low initial stress state; the results indicate that the seismic velocities increase with the initial stress. The analysis of the previous data of seismic velocities and elastic coefficients in rocks under ultra-high hydrostatic initial stress are also investigated.

Wave propagation of FGM plate via new integral inverse cotangential shear model with temperature-dependent material properties

  • Mokhtar Ellali;Mokhtar Bouazza;Ashraf M. Zenkour
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.427-437
    • /
    • 2023
  • The objective of this work is to study the wave propagation of an FGM plate via a new integral inverse shear model with temperature-dependent material properties. In this contribution, a new model based on a high-order theory field of displacement is included by introducing indeterminate integral variables and inverse co-tangential functions for the presentation of shear stress. The temperature-dependent properties of the FGM plate are assumed mixture of metal and ceramic, and its properties change by the power functions of the thickness of the plate. By applying Hamilton's principle, general formulas of wave propagation were obtained to plot the phase velocity curves and wave modes of the FGM plate with simply supported edges. The effects of the temperature and volume fraction by distributions on wave propagation of the FGM plate are investigated in detail. The results of the dispersion and the phase velocity curves of the propagation wave in the functionally graded plate are compared with previous research.

A Experimental Study on Train Speed and Wave Propagation Speed of Contact Wire according to the Speed-up (속도향상에 따른 열차속도와 전차선 파동전파속도에 대한 실험적 연구)

  • Lee, Kiwon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1820-1823
    • /
    • 2013
  • An overhead catenary system is the one of the main subjects for increasing speed in electric railway. When a vehicle increases the speed over 350km/h, vibrations and wave propagation reflections occur severely. Therefore, the system suitable for the speed are needed. A wave propagation speed of contact wire is the main criteria to determine the tension for the system. Therefore, a train speed is restricted below 70% of wave propagation speed of it in European railway code. In this study, we measured a strain and uplift of contact wire while HEMU-430X tain is operated for the speed-up trial test in Kyungbu high-speed railway. The measured strain and uplift are analyzed with wave propagation speed according to the speed-up. The more a train speed reaches to a propagation speed, the more measured strain is high. Through the study, an experimental approach is performed about the code which a train speed is restricted below 70% of wave propagation speed of it.

Stress wave propagation in clearance joints based on characteristics method

  • Tang, Ya-Qiong;Li, Tuan-Jie;Chen, Cong-Cong;Wang, Zuo-Wei
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.781-788
    • /
    • 2017
  • In this paper, a stress wave model is established to describe the three states (separate, contact and impact) of clearance joints. Based on this stress wave model, the propagation characteristics of stress wave generated in clearance joints is revealed. First, the stress wave model of clearance joints is established based on the viscoelastic theory. Then, the reflection and transmission characteristics of stress wave with different boundaries are studied, and the propagation of stress wave in viscoelastic rods is described by the characteristics method. Finally, the stress wave propagation in clearance joints with three states is analyzed to validate the proposed model and method. The results show the clearance sizes, initial axial speeds and material parameters have important influences on the stress wave propagation, and the new stress waves will generate when the clearance joint in contact and impact states, and there exist some high stress region near contact area of clearance joints when the incident waves are superposed with reflection waves, which may speed up the damage of joints.

Wave Propagation of Laminated Composites by the Hgih-Velocity Impact Experiment (고속 충격실험에 의한 적층 복합재의 파동전파에 관한 연구)

  • 김문생;김남식;박승범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1931-1939
    • /
    • 1993
  • The wave propagation characteristics of laminated composites subjected to a transverse high-velocity impact of a steel ball is investigated. For this purpose, high-velocity impact experiments were conducted to obtain the strain response histories, and a finite element analysis based on the higher-order shear deformation theory in conjunction with the static contact law is used. Test materials for investigation are glass/epoxy laminated composite materials with $[0^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}]_{2s}$ and $[90^{\circ}/-45^{\circ}/90^{\circ}-45^{\circ}/90^{\circ}]_{2s}$ stacking sequences. As a result, the strain responses obtained from the experiments represented the wave propagation characteristics in the transversely impact, also the wave propagation velocities obtained from high-velocity impact experiments and wave propagation theory agree well.

Imaging of seismic sources by time-reversed wave propagation with staggered-grid finite-difference method (지진원 영상화를 위한 엇갈린 격자 유한 차분법을 이용한 지진파 역행 전파 모의)

  • Sheen, Dong-Hoon;Hwang, Eui-Hong;Ryoo, Yong-Gyu;Youn, Yong-Hoon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.25-32
    • /
    • 2006
  • We present a imaging method of seismic sources by time reversal propagation of seismic waves. Time-reversal wave propagation is actively used in medical imaging, non destructive testing and waveform tomography. Time-reversal wave propagation is based on the time-reversal invariance and the spatial reciprocity of the wave equation. A signal is recorded by an array of receivers, time-reversed and then back-propagated into the medium. The time-reversed signal propagates back into the same medium and the energy refocuses back at the source location. The increasing power of computers and numerical methods makes it possible to simulate more accurately the propagation of seismic waves in heterogenous media. In this work, a staggered-grid finite-difference solution of the elastic wave equation is employed for the wave propagation simulation. With numerical experiments, we show that the time-reversal imaging will enable us to explore the spatio-temporal history of complex earthquake.

  • PDF

The piezoelectricity of trabecular bone in cancellous bone wave propagation

  • Yoon, Young June;Chung, Jae Pil
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.1
    • /
    • pp.104-107
    • /
    • 2021
  • The orientation of trabeculae and porosity determine the wave propagation in cancellous bone. Wave propagation, as well as charge density and piezoelectricity, stimulate bone remodeling. Also, Charged ions in the fluid affect wave propagation in cancellous bone. But the trabecular struts' piezoelectricity does not change the waveform of cancellous bone. However, the underlying mechanism is unknown yet why trabecula struts' piezoelectricity does not change wave propagation through cancellous bone. Thus, we derived the governing equation indicating that trabecular struts' piezoelectric properties show that those do not affect wave propagation in cancellous bone.