• Title/Summary/Keyword: Euler Bernoulli

Search Result 523, Processing Time 0.027 seconds

Influence of Tip mass on Dynamic Behavior of Cracked Cantilever Pipe Conveying Fluid with Moving Mass

  • Yoon Han-Ik;Son In-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1731-1741
    • /
    • 2005
  • In this paper, we studied about the effect of the open crack and a tip mass on the dynamic behavior of a cantilever pipe conveying fluid with a moving mass. The equation of motion is derived by using Lagrange's equation and analyzed by numerical method. The cantilever pipe is modelled by the Euler-Bernoulli beam theory. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The influences of the crack, the moving mass, the tip mass and its moment of inertia, the velocity of fluid, and the coupling of these factors on the vibration mode, the frequency, and the tip-displacement of the cantilever pipe are analytically clarified.

Numerical Analysis of Large Deflections of Cantilever Beams (캔틸레버 보의 과대처짐 해석)

  • Lee, Byoung Koo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 1990
  • A method is developed for solving the elastica of cantilever beam subjected to a tip point load and uniform load. The Bernoulli-Euler differential equation of deflected beam is used. The Runge-Kutta method and the Regula Falsi method are used to perform the integration of the differential eqution and to determine the horizontal deflection, respectively. The horizontal and vertical deflections of the free end, and the free-end rotations are calculated for a range of parameters representing variations in tip point load and uniform load. All results are presented in nondimensional forms. And some typical elastic are also presented.

  • PDF

Vibration Analysis of Rotating Pre-twisted Inward Beams with a Concentrated Mass (집중질량과 초기 비틀림을 갖는 회전중심방향 자유단 외팔보의 진동해석)

  • Lee, Gun Ho;Yoo, Hong Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.6
    • /
    • pp.384-390
    • /
    • 2015
  • The vibration analysis of rotating inward beams considering the pre-twisted is presented based on Euler-Bernoulli beam theory. The frequency equations, are calculated using hybrid deformation variable modeling along with the Rayleigh-Ritz assumed mode methods. In this study, resulting system of ordinary differential equations shows the effects of angular speed, and Young's modulus ratio. It is believed that the results will be a reference with which other researchers and commercial FE analysis program, ANSYS can compare their result.

A modal analysis for a hung Euler-Bernoulli beam with a lumped mass

  • Kasahara, Misawa;Kojima, Akira;Ishijima, Shintaro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.349-354
    • /
    • 1992
  • In this paper, a modal analysis is applied for a hung Euler-Bernoulli beam with a lumped mass. We first derive the equations of motion using the Hamilton's principle. Then regarding the tension of beam as constant, we characterize the eigenfrequencies and the feature of eigenfunctions. The approximation employed here is corresponding that the lumped mass is sufficiently large than that of beam. Finally we compare the eigenfrequencies derived here with those obtained based on the Southwell's method.

  • PDF

Frequency analysis of beams with multiple dampers via exact generalized functions

  • Failla, Giuseppe
    • Coupled systems mechanics
    • /
    • v.5 no.2
    • /
    • pp.157-190
    • /
    • 2016
  • This paper deals with frequency analysis of Euler-Bernoulli beams carrying an arbitrary number of Kelvin-Voigt viscoelastic dampers, subjected to harmonic loads. Multiple external/internal dampers occurring at the same position along the beam axis, modeling external damping devices and internal damping due to damage or imperfect connections, are considered. The challenge is to handle simultaneous discontinuities of the response, in particular bending-moment/rotation discontinuities at the location of external/internal rotational dampers, shear-force/deflection discontinuities at the location of external/internal translational dampers. Following a generalized function approach, the paper will show that exact closed-form expressions of the frequency response under point/polynomial loads can readily be derived, for any number of dampers. Also, the exact dynamic stiffness matrix and load vector of the beam will be built in a closed analytical form, to be used in a standard assemblage procedure for exact frequency response analysis of frames.

Static behavior of nonlocal Euler-Bernoulli beam model embedded in an elastic medium using mixed finite element formulation

  • Nguyen, Tuan Ngoc;Kim, Nam-Il;Lee, Jaehong
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.137-146
    • /
    • 2017
  • The size-dependent behavior of single walled carbon nanotubes (SWCNT) embedded in the elastic medium and subjected to the initial axial force is investigated using the mixed finite element method. The SWCNT is assumed to be Euler-Bernoulli beam incorporating nonlocal theory developed by Eringen. The mixed finite element model shows its great advantage of dealing with nonlocal behavior of SWCNT subjected to a concentrated load owing to the existence of two coefficients ${\alpha}_1$ and ${\alpha}_2$. This is the first numerical approach to deal with a puzzling fact of nonlocal theory with concentrated load. Numerical examples are performed to show the accuracy and efficiency of the present method. In addition, parametric study is carefully carried out to point out the influences of nonlocal effect, the elastic medium, and the initial axial force on the behavior of the carbon nanotubes.

Vibration Analysis of a Stacked beam Including Frictional Contact Force (마찰 접촉력을 고려한 다발 보(Stacked Beam)의 진동 해석)

  • 이기수;임철호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1513-1518
    • /
    • 1992
  • Numerical solution technique is suggested to analyze the vibration of a spring composed of stacked beams fastened together. Bernoulli-Euler beam theory for small deflection is used, and incremental Coulomb friction law is adopted for the interface friction. The validity of the present solution technique is checked for the perfectly bonded case and the perfect sliding case.

Free vibration analysis of chiral double-walled carbon nanotube embedded in an elastic medium using non-local elasticity theory and Euler Bernoulli beam model

  • Dihaj, Ahmed;Zidour, Mohamed;Meradjah, Mustapha;Rakrak, Kaddour;Heireche, Houari;Chemi, Awda
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.335-342
    • /
    • 2018
  • The transverse free vibration of chiral double-walled carbon nanotube (DWCNTs) embedded in elastic medium is modeled by the non-local elasticity theory and Euler Bernoulli beam model. The governing equations are derived and the solutions of frequency are obtained. According to this study, the vibrational mode number, the small-scale coefficient, the Winkler parameter and chirality of double-walled carbon nanotube on the frequency ratio (xN) of the (DWCNTs) are studied and discussed. The new features of the vibration behavior of (DWCNTs) embedded in an elastic medium and the present solutions can be used for the static and dynamic analyses of double-walled carbon nanotubes.

Dynamics of an Axially Moving Bernoulli-Euler Beam: Spectral Element Modeling and Analysis

  • Hyungmi Oh;Lee, Usik;Park, Dong-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.395-406
    • /
    • 2004
  • The spectral element model is known to provide very accurate structural dynamic characteristics, while reducing the number of degree-of-freedom to resolve the computational and cost problems. Thus, the spectral element model for an axially moving Bernoulli-Euler beam subjected to axial tension is developed in the present paper. The high accuracy of the spectral element model is then verified by comparing its solutions with the conventional finite element solutions and exact analytical solutions. The effects of the moving speed and axial tension on the vibration characteristics, wave characteristics, and the static and dynamic stabilities of a moving beam are investigated.

Numerical Tests of Large Mass Method for Stress Calculation of Euler-Bernoulli Beams Subjected to Support Accelerations (지지점 가속도에 의해 가진되는 보의 응력계산에 대한 거대질량법의 정확도)

  • Kim, Yong-Woo;Choi, Nam Seok;Jhung, Myung Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.188-193
    • /
    • 2013
  • The large mass method for dynamic analysis of statically determinate beams subjected to in-phase support motions is justified by showing that the equation of motion of the beams under consideration is equivalent to that of large mass model of the beam when an appropriate large mass ratio is employed. The accuracy of the stress responses based on the beam large mass method is investigated through careful numerical tests. The numerical results are compared to analytic solutions and the comparison shows that the large mass method yields not only the time history of motion but also the distributions of bending moment and shear force accurately.

  • PDF