• Title/Summary/Keyword: Euler Angle Rotation

Search Result 33, Processing Time 0.019 seconds

Optimal Design of a 6-DOF Parallel Mechanism using a Genetic Algorithm (유전 알고리즘을 이용한 6자유도 병렬기구의 최적화 설계)

  • Hwang, Youn-Kwon;Yoon, Jung-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.560-567
    • /
    • 2007
  • The objective of this research is to optimize the designing parameters of the parallel manipulator with large orientation workspace at the boundary position of the constant orientation workspace (COW). The method uses a simple genetic algorithm(SGA) while considering three different kinematic performance indices: COW and the global conditioning index(GCI) to evaluate the mechanism's dexterity for translational motion of an end-effector, and orientation workspace of two angle of Euler angles to obtain the large rotation angle of an end-effector at the boundary position of COW. Total fifteen cases divided according to the combination of the sphere radius of COW and rotation angle of orientation workspace are studied, and to decide the best model in the total optimized cases, the fuzzy inference system is used for each case's results. An optimized model is selected as a best model, which shows better kinematic performances compared to the basis of the pre-existing model.

A New Experimental Error Reduction Method for Three-Dimensional Human Motion Analysis

  • Mun, Joung-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.5
    • /
    • pp.459-468
    • /
    • 2001
  • The Average Coordinate Referenee System (ACRS) method is developed to reduce experimental errors in human locomotion analysis. Experimentally measured kinematic data is used to conduct analysis in human modeling, and the model accuracy is directly related to the accuracy of the data. However. the accuracy is questionable due to skin movement. deformation of skeletal structure while in motion and limitations of commercial motion analysis system . In this study. the ACRS method is applied to an optically-tracked segment marker system. although it can be applied to many of the others as well. In the ACRS method, each marker can be treated independently. as the origin of a local coordinate system for its body segment. Errors, inherent in the experimental process. result in different values for the recovered Euler angles at each origin. By employing knowledge of an initial, calibrated segment reference frame, the Euler angles at each marker location can be averaged. minimizing the effect of the skin extension and rotation. Using the developed ACRS methodology the error is reduced when compared to the general Euler angle method commonly applied in motion analysis. If there is no error exist in the experimental gait data. the separation and Penetration distance of the femoraltibial joint using absolute coordinate system is supposed to be zero during one gait cycle. The separation and Penetration distance was ranged up to 18 mm using general Euler angle method and 12 mm using the developed ACRS.

  • PDF

Design on the Controller of Flexible Robot using Sliding Sector Control (슬라이딩 섹터 제어를 이용한 유연한 로봇 팔에 대한 제어기 설계)

  • Han, Jong-Kil;Bae, Sung-Hwan;Yang, Keun-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.5
    • /
    • pp.541-546
    • /
    • 2010
  • When a flexible arm is rotated by a motor about an joint axis, transverse vibration may occur. The motor torque should be controlled in such a way that the moter rotates by a specified angle, while simultaneously stabilizing vibration of the flexible arm so that it is arrested at the end of rotation. In this paper, the dynamic model of flexible robot arm is modeled by using Bernoulli-Euler beam theory and Lagrange equation. Nonlinear control with hysteresis deadzone using the sliding sector theory with continued input function in the sector is proposed.

Enumeration of axial rotation

  • Yoon, Yong-San
    • Advances in biomechanics and applications
    • /
    • v.1 no.2
    • /
    • pp.85-93
    • /
    • 2014
  • In this paper, two procedures of enumerating the axial rotation are proposed using the unit sphere of the spherical rotation coordinate system specifying 3D rotation. If the trajectory of the movement is known, the integration of the axial component of the angular velocity plus the geometric effect equal to the enclosed area subtended by the geodesic path on the surface of the unit sphere. If the postures of the initial and final positions are known, the axial rotation is determined by the angular difference from the parallel transport along the geodesic path. The path dependency of the axial rotation of the three dimensional rigid body motion is due to the geometric effect corresponding to the closed loop discontinuity. Firstly, the closed loop discontinuity is examined for the infinitesimal region. The general closed loop discontinuity can be evaluated by the summation of those discontinuities of the infinitesimal regions forming the whole loop. This general loop discontinuity is equal to the surface area enclosed by the closed loop on the surface of the unit sphere. Using this quantification of the closed loop discontinuity of the axial rotation, the geometric effect is determined in enumerating the axial rotation. As an example, the axial rotation of the arm by the Codman's movement is evaluated, which other methods of enumerating the axial rotations failed.

Orientation Tracking Method based on Angular Displacement for Wireless Capsule Endoscope (각변위 방식을 이용한 캡슐의 오리엔테이션 측정 방법)

  • Yoo, Young-Sun;Kim, Myung-Yu;You, Young-Gap
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.2
    • /
    • pp.27-32
    • /
    • 2008
  • In this paper, we propose an orientation tracking method and a digestion path model based on angular displacement. The proposed method expresses a capsule's orientation as 3-dimension vectors and its rotation angle. Errors in roll, pitch, and yaw representing capsule's orientation information is down to $1.6^{\circ}$. Using the proposed method we can measure a roll which is not Possible to be measured using the magnetic field method. We reduce algorithm complexity lower than a previous methods based on Euler angle.

Effect of Shock Waves on Dynamic Stability of Transonic Missiles (천음속 미사일의 동안정성에 대한 충격파 영향)

  • Park, Su-Hyeong;Gwon, Jang-Hyeok;Heo, Gi-Hun;Byeon, U-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.12-20
    • /
    • 2002
  • Three dimentional unsteady Euler equations are solved and an integration method is presented to predict the dynamic stability derivatives of transonic missiles. Results for the Basic Finner model are compared with several experimental data to vaildate the prediction capability of the present method. The variations of dynamic stability derivatives are discussed with respect to angle of attack, Mach number, and rotation rate. Results show that shock waves between fins enhance the pitch-damping characteristics in transonic region. Results also imply that the Euler equations can give the damping coefficients with comparable accuracy.

On the Use of Finite Rotation Angles for Spacecraft Attitude Control

  • Kim, Chang Joo;Hur, Sung Wook;Ko, Joon Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.300-314
    • /
    • 2017
  • This paper examines finite rotation angle (FRA) applications for spacecraft attitude control. The coordinate transformation matrix and the attitude kinematics represented by FRAs are introduced. The interpolation techniques for the angular orientations are thoroughly investigated using the FRAs and the results are compared to those using traditional methods. The paper proposes trajectory description techniques by using extremely smooth polynomial functions of time, which can describe point-to-point attitude maneuvers in a realizable and accurate manner with the help of unique FRA features. In addition, new controller design techniques using the FRAs are developed by combining the proposed interpolation techniques with a model predictive control framework. The proposed techniques are validated through their attitude control applications for an aggressive point-to-point maneuver. Conclusively, the FRAs provide much more flexibility than quaternions and Euler angles when describing kinematics, generating trajectories, and designing attitude controllers for spacecraft.

Development of Optical Sighting System for Moving Target Tracking

  • Jeung, Bo-Sun;Lim, Sung-Soo;Lee, Dong-Hee
    • Current Optics and Photonics
    • /
    • v.3 no.2
    • /
    • pp.154-163
    • /
    • 2019
  • In this study, we developed an optical sighting system capable of shooting at a long-distance target by operating a digital gyro mirror composed of a gyro sensor and an FSM. The optical sighting system consists of a reticle part, a digital gyro mirror (FSM), a parallax correction lens, a reticle-ray reflection mirror, and a partial reflection window. In order to obtain the optimal volume and to calculate the leading angle range according to the driving angle of the FSM, a calculation program using Euler rotation angles and a three-dimensional reflection matrix was developed. With this program we have confirmed that the horizontal leading angle of the developed optical sighting system can be implemented under about ${\pm}8^{\circ}$ for the maximum horizontal driving angle (${\beta}={\pm}12.5^{\circ}$) of the current FSM. Also, if the ${\beta}$ horizontal driving angle of the FSM is under about ${\pm}15.5^{\circ}$, it can be confirmed that the horizontal direction leading angle can be under ${\pm}10.0^{\circ}$. If diagonal leading angles are allowed, we confirmed that we can achieve a diagonal leading angle of ${\pm}10.0^{\circ}$ with a vertical driving angle ${\alpha}$ of ${\pm}7.1^{\circ}$ and horizontal driving angle ${\beta}$ of ${\pm}12.5^{\circ}$.

A Leveling Algorithm for Strapdown Inertial Navigation System Using Extended Kalman Filter (화장칼만필터를 이용한 스티랩다운 관성항법시스템의 수평축 정렬 알고리즘)

  • Hong, Hyun-Su;Park, Chan-Gook;Han, Hyung-Seok;Lee, Jang-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.1
    • /
    • pp.1231-1239
    • /
    • 2001
  • This paper presents a new leveling algorithm that estimates the initial horizontal angles composed of roll angle and pitch angle for a moving or stationary vehicle. The system model of the EKF is designed by linearizing the nonlinear Euler angle differential equation. The measurement models are designed for the moving case and for the stationary case, respectively. The simulation results show that the leveling algorithm is ade-quate not only for acquiring the initial horizontal angles of the vehicle in the motion with acceleration and rotation but also for the stationary one.

  • PDF

Three dimensional Kinematic Analysis of Sweep Shot in Ice Hockey (아이스하키 스위프 샷(Sweep shot) 동작의 3차원 운동학적 분석)

  • Choi, Ji-Young;Moon, Gon-Sung
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.49-59
    • /
    • 2006
  • The purpose of this study was to investigate the relations between the segments of the body, the three dimensional anatomical angle according to sweep shot in ice hockey. The subjects of this study were five professional ice hockey players. The reflective makers were attached on anatomical boundary line of body. For the movement analysis three dimensional cinematographical method(APAS) was used and for the calculation of the kinematic variables a self developed program was used with the LabVIEW 6.1 graphical programming(Johnson, 1999) program. By using Eular's equations the three dimensional anatomical Cardan angles of the joint and ice hockey stick were defined. 1. In three dimensional linear velocity of blade the Y axis showed maximum linear velocity almost impact, the X axis(horizontal direction) and the Z axis(vertical direction) maximum linear velocity of blade did not show at impact but after impact this will resulted influence upon hitting puck. 2. The resultant linear velocity of each segment of right arm showed maximum resultant linear velocity at impact. It could be suggest that the right arm swing patterns is kind of push-like movement. therefore the upper arm is the most important role in the right arm swing. 3. The three dimensional anatomical angular displacement of trunk in flexion-extension showed flexion all around the wrist shot. The angular displacement of trunk in internal-external rotation showed internal rotation angle at the backswing top and and increased the angle after the impact. while there is no significant adduction-abduction. 4. The three dimensional anatomical angular displacement of trunk showed most important role in wrist shot. and is follwed by shoulder joints, in addition the movement of elbow/wrist joints showed least to the shot. this study result showed upperlimb of left is more important role than upperlimb of right.