• Title/Summary/Keyword: Estimation error

Search Result 4,228, Processing Time 0.03 seconds

Performance Enhancement of Decision Directed SNR Estimation by Correction Scheme of SNR Estimation Error (결정지향 SNR 추정방식에서의 추정오차 보정기법을 통한 SNR 추정성능개선)

  • Kwak, Jae-Min
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.982-987
    • /
    • 2012
  • In this paper, the SNR estimation error of Decision Directed SNR estimation method in AWGN is investigated, which uses samples received in reference decision region. In communication system receiver, when SNR estimation scheme using error vectors between ideal sample points and received sample points of reference region is adopted, the samples contain incorrectly received samples due to AWGN. Consequently, the mean of estimated reference constellation point is shifted and Decision Directed SNR estimation is inaccurately performed. These effects are explained by modified probability density function and difference between actual SNR and estimated SNR is theoretically derived and quantatively analyzed. It is proved that SNR estimation error obtained through computer simulation is matched up with derived one, and SNR estimation performance is enhanced significantly by adopting suggested correction scheme.

Least Square Channel Estimation Scheme of OFDM System using Fuzzy Inference Method (퍼지 추론법을 적용한 OFDM 시스템의 LS(Least Square) 채널추정 기법)

  • Kim, Nam;Choi, Jung-Hun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.5
    • /
    • pp.84-90
    • /
    • 2009
  • In this paper, the new channel estimation was proposed that have the low complexity and high performance using Fuzzy inference method uses recently from various field for estimation about uncertainty in channel estimation of OFDM. Proposed method is channel estimation performance improve, calculation and interpolation for statistics character of channel using the pilot before LS channel estimation by Fuzzy inference method. Simulation result in QPSK proposed channel estimation method shows the enhancement of 5.5dB compared to the LS channel estimation and the deterioration of 1.3dB compared to the MMSE channel estimation in mean square error point $10^{-3}$. symbol error rate shows similarity performance the MMSE $10^{-1.96}$, proposed channel estimation $10^{-1.93}$ and enhancement of $10^{-0.35}$ compared to the LS channel estimation in signal to noise ratio point 20dB.

Error Intensity Function Models for ML Estimation of Signal Parameter, Part I : Model Derivation (신호 파라미터의 ML 추정기법에 대한 에러 밀도 함수 모델에 관한 연구 I : 모델 정립)

  • Joong Kyu Kim
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.12
    • /
    • pp.1-11
    • /
    • 1993
  • This paper concentrates on models useful for analyzing the error performance of ML(Maximum Likelihood) estimators of a single unknown signal parameter: that is the error intensity model. We first develop the point process representation for the estimation error and the conditional distribution of the estimator as well as the distribution of error candidate point process. Then the error intensity function is defined as the probability dessity of the estimate and the general form of the error intensity function is derived. We then develop several intensity models depending on the way we choose the candidate error locations. For each case, we compute the explicit form of the intensity function and discuss the trade-off among models as well as the extendability to the case of multiple parameter estimation.

  • PDF

지자기 전달함수의 로버스트 추정

  • Yang, Jun-Mo;O, Seok-Hun;Lee, Deok-Gi;Yun, Yong-Hun
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.2
    • /
    • pp.131-142
    • /
    • 2002
  • Geomagnetic transfer function is generally estimated by choosing transfer to minimize the square sum of differences between observed values. If the error structure sccords to the Gaussian distribution, standard least square(LS) can be the estimation. However, for non-Gaussian error distribution, the LS estimation can be severely biased and distorted. In this paper, the Gaussian error assumption was tested by Q-Q(Quantile-Quantile) plot which provided information of real error structure. Therefore, robust estimation such as regression M-estimate that does not allow a few bad points to dominate the estimate was applied for error structure with non-Gaussian distribution. The results indicate that the performance of robust estimation is similar to the one of LS estimation for Gaussian error distribution, whereas the robust estimation yields more reliable and smooth transfer function estimates than standard LS for non-Gaussian error distribution.

  • PDF

Performance Comparison of Radar Signal Active Cancellation Systems According to Pulsed-CW Parameter Estimation Error (Pulsed-CW 신호 파라미터 추정 오차에 따른 레이더 신호 능동 상쇄 성능 비교)

  • Choi, Seung-Kyu;Lee, Chung-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.10
    • /
    • pp.60-66
    • /
    • 2011
  • In this paper, we analyze the effects of estimation error in the active cancellation signal, which is intended to counter the pulsed-CW signal of a hostile radar. We also examine the effects of estimation error in maximum-likelihood estimation (MLE) and quadratic interpolation scheme from a radar signal active cancellation viewpoint. Then, we modify the correlation-based error compensation scheme which mitigates the estimation error of MLE to improve the performance of the active cancellation signal. Finally, we present simulation results to show that the correlation-based scheme has better performance than the other in terms of radar signal active cancellation.

Error Intensity Function Models for ML Estimation of Signal Parameter, Part II : Applications to Gaussian and Impulsive Noise Environments (신호 파라미터의 ML추정 기법에 대한 에러 밀도 함수모델에 관한 연구 II : 가우시안 및 임펄스 잡음 환경에의 적용)

  • Kim, Joong Kyu
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.1
    • /
    • pp.85-95
    • /
    • 1995
  • The error intensity models for the ML estimation of a signal parameter have been developed in a companion paper [1]. While the methods described in [1] are applicable to any estimation problem with continuous parameters, our main application in this paper is the time delay estimation, and comparisons among the models derived in [1] (i.e. LC, LM, and ALM models)have been made. We first consider the case where only additive Gaussian noise is involved, and then the shot noise environment where coherent impulsive noise is also involved in addition to the Gaussian noise. We compare the models in terms of the probability of error, MSE(Mean Squared Error), and the computational complexity, which are the most important performance criteria in the analysis of parameter estimation. In conclusion, the ALM model turned out to be the most adequate model of all from the viewpoints of the criteria mentioned above.

  • PDF

Design of the Estimator of Forward Kinematics Solution for a 6 DOF Motion Bed (6자유도 운동재현용 베드의 순기구학 추정기 설계)

  • 강지윤;김동환;이교일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.483-487
    • /
    • 1996
  • We consider the estimation of the position and orientation of 6 DOF motion bed (Stewart platform) from the measured cylinder length. The solution of forward kinematics is not solved yet as a useful realtime application tool because of the complity of the equation with multiple solutiple solutions. Hence we suggest an algorithm for the estimation of forward kinematics solution using Luenberger observer withnonlinear error correction term. The Luenberger observer withlinear model shows that the estimation error does not go to zero in steadystate due to the linearization error of the dynamic model. Hence the linear observer is modified using nonlinear measurement error equation and we prove thd practical stability of the estimation error dynamics of the proposed observer using lyapunov function.

  • PDF

A Study on Beam Error Method of Coherent Interference Signal Estimation using Optimum Covariance Weight Vector (최적 공분산 가중 벡터를 이용한 상관성 간섭 신호 추정의 빔 지향 오차)

  • Cho, Sung Kuk;Lee, Jun Dong;Jeon, Byung Kook
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.4
    • /
    • pp.53-61
    • /
    • 2014
  • In this paper, we proposed covariance weight matrix using SPT matrix in order to accurate target estimation. We have estimated a target using modified covariance matrix and beam steering error method. We have minimized beam steering error in order to estimation desired a target. This method obtain optimum covariance weight using modified SPT matrix. This paper of proposal method is showed good performance than general method. We updated a weight of covariance matrix using modified SPT matrix. We obtain optimum covariance matrix weight to application beam steering error method in order to beam steering toward desired target. Through simulation, we showed that compare proposal method with general method. It have improved resolution of estimation target to good performance more proposed method than general method.

A Study on Maximum Posterior Probability Estimator for Direction of Arrival Estimation of Incoming Signal (입사신호의 도래방향 추정을 위한 최대 사후 확률 추정기에 대한 연구)

  • Lee, Kwan-Hyeong;Park, Sung-Kon;Jeong, Youn-Seo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.2
    • /
    • pp.190-195
    • /
    • 2016
  • In this paper, we are comparative analysis both class method and proposal method in order to estimation of incident signal direction on uniform array antenna system. Proposal method of this paper decrease error probability for a signal direction of arrival estimation using maximum posterior probability estimator. If it decrease to signal estimation direction error probability, signal direction of arrival can correctly estimate. Through simulation, we were comparative analysis proposed method and class method. Also, we were comparative analysis about signal estimation error probability with increasing array antenna element. We show the superior performance of the proposed method relative to the class method to decrease of signal estimation error probability about 12%.

A Novel Channel Estimation using 2-Dimensional Linear Iinterpolation for OFDM MIMO systems (2차원 선형보간법을 이용한 OFDM MIMO 시스템에서의 채널 추정)

  • Oh, Tae Youl;Ahn, Sung Soo;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.3
    • /
    • pp.107-113
    • /
    • 2011
  • An OFDMA(Orthogonal Frequency Division Multiple Access) includes a MIMO(Multi-Input Multi-Output) scheme for improving spectral efficiency and data throughput. Recognizing that the performance of MIMO system is heavily dependent upon the accuracy of channel estimation, we propose a novel channel estimation for the MIMO scheme based on OFDMA. Conventional interpolation-based channel estimation suffers from poor estimation error at specific subcarriers. Proposed scheme makes use of a planar interpolation instead of linear interpolation for those subcarriers of bad accuracy. Simulation results show that the proposed scheme improves the performance of MIMO system by improving the accuracy in channel estimation especially for the adverse subcarrier positions. It is observed that the proposed scheme outperforms the conventional method by about 2dB in terms of both mean squared error and overall bit error rate with a reasonable computational complexity.