• Title/Summary/Keyword: Error Floors

Search Result 27, Processing Time 0.024 seconds

An Effective Decoding Algorithm of LDPC Codes with Lowering Error Floors (낮은 에러 플로어(error floor)를 사용한 효과적인 LDPC 복호 알고리듬)

  • Wang, Shuo-Chen;Suh, Hee-Jong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.10
    • /
    • pp.1111-1116
    • /
    • 2014
  • In this paper, in order to improve performance of LDPC codes, we propose an effective algorithm with lowering error floor of LDPC codes. This method is done by breaking trapping sets, mostly caused by an undesirable structure. This algorithm is not need to observe all the errors, only need to break the trapping sets, to effect the effectiveness. Simulation results show that its performance can be significantly improved with this decoding algorithm.

A Case of Sprinkler Non-Working by Programming Error (프로그래밍 오류에 의한 스프링클러 미작동 사례)

  • Seo, Young-Il;Cho, Young-Jin;Moon, Byung-Seon;Park, Jong-Jin;Park, Jong-Chan;Park, Nam-Kyu
    • Fire Science and Engineering
    • /
    • v.22 no.2
    • /
    • pp.116-120
    • /
    • 2008
  • According to the Fire Services Act revised in 2005, it has been required to set up sprinkler systems to all floors to the newly builded apartments having above 11 floors. But, according to the Fire Services Act before 2005, it had been required to set up sprinkler systems from 16 floors to the top floors to the apartments having above 16 floors. This case is the accident that a victim was dead by the fire which is inferred as an accidental fire by a cigarette butt in a 17th floor apartment unit in an apartment having 17th floors and that the bereaved family called in question why the sprinklers non worked at the fire. Through the field investigation, we checked that the sprinklers worked well when the fire detectors at the 16th floor of the apartment were operated and that the sprinklers non worked when the fire detectors at the 17th floor of the apartment were operated. We made clear that the cause of the sprinkler non-working at the 17th floor is the programming error of the sprinkler controller.

Design and Performance Analysis of Nonbinary LDPC Codes With Low Error-Floors (오류 마루 현상이 완화된 비이진 LDPC 부호의 설계 및 성능 분석 연구)

  • Ahn, Seok-Ki;Lim, Seung-Chan;Yang, Youngoh;Yang, Kyeongcheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.10
    • /
    • pp.852-857
    • /
    • 2013
  • In this paper we propose a design algorithm for nonbinary LDPC (low-density parity-check) codes with low error-floors. The proposed algorithm determines the nonbinary values of the nonzero entries in the parity-check matrix in order to maximize the binary minimum distance of the designed nonbinary LDPC codes. We verify the performance of the designed nonbinary LDPC codes in the error-floor region by Monte Carlo simulation and importance sampling over BPSK (binary phase-shift keying) modulation.

3D Multi-floor Precision Mapping and Localization for Indoor Autonomous Robots (실내 자율주행 로봇을 위한 3차원 다층 정밀 지도 구축 및 위치 추정 알고리즘)

  • Kang, Gyuree;Lee, Daegyu;Shim, Hyunchul
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.1
    • /
    • pp.25-31
    • /
    • 2022
  • Moving among multiple floors is one of the most challenging tasks for indoor autonomous robots. Most of the previous researches for indoor mapping and localization have focused on singular floor environment. In this paper, we present an algorithm that creates a multi-floor map using 3D point cloud. We implement localization within the multi-floor map using a LiDAR and an IMU. Our algorithm builds a multi-floor map by constructing a single-floor map using a LOAM-based algorithm, and stacking them through global registration that aligns the common sections in the map of each floor. The localization in the multi-floor map was performed by adding the height information to the NDT (Normal Distribution Transform)-based registration method. The mean error of the multi-floor map showed 0.29 m and 0.43 m errors in the x, and y-axis, respectively. In addition, the mean error of yaw was 1.00°, and the error rate of height was 0.063. The real-world test for localization was performed on the third floor. It showed the mean square error of 0.116 m, and the average differential time of 0.01 sec. This study will be able to help indoor autonomous robots to operate on multiple floors.

Error Estimate of Local Vibration for Building Structures Using Substructure Models (부분구조모델을 이용한 건축물의 국부진동해석에서의 오차원인 분석)

  • 안상경;이현수;이동근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.545-552
    • /
    • 2001
  • Analysis of a structure for vertical vibration requires a lot of computational efforts because large number of degrees of freedom are generally involved in the dynamic response. Especially, when a structure is loaded with local vibration source, it may not be economical to model the whole structure to obtain the responses of specific members located near or far from the sources. In this study, substructure models have been used for analysis of local vibration An analysis of local vibration is performed for the case that the loaded point and the response point are located on the same floor. Other analysis is performed for the case that the loaded point and the response point are located on the different floor. In this case, if only the floors on which loaded and response points are located are modeled, response of substructure model is very different from that of full model. So, there should be a consideration that degrees of freedom of floors in addition to those of loaded and response floors are included to improve results of dynamic analysis. In this study, floors between loaded floor and response floor were modeled so that modeshapes which affect the response are presented well.

  • PDF

The Error Rate Evaluation for Differential Demodulation of 2-h Continuous Phase Modulation (차동 복조 2-h 연속 위성 변조의 오류 확률)

  • 윤동원;한영열
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.7
    • /
    • pp.29-35
    • /
    • 1994
  • The performance of continuous phase modulation signals is well known for the coherent demodulation. But the carrier recovery circuits of the coherent receiver have long acquisition time and the receiver experiences high error floors for fading channels. In this paper, we propose the differential demodulation of 2-h continuous phase modulation signals. The sets of modulation indices of 2-h phase codes adequate to the differential demodulation for differentially encoded input are obtained and the average bit error probability in Additive White Gaussian Noise environments is derived and analyzed.

  • PDF

Measurement and Analysis of Prefounded Column Straightness in Top Down Construction (Top Down 선기둥의 계측과 자료 분석)

  • Shin Cheon-Kyun;Rhim Hong-Chul;Kim Seung-Weon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.173-176
    • /
    • 2006
  • The purpose of this study is to investigate the cause of an error of prefounded column straightness and to measure the error during Top-Down construction. There are several causes of an error of prefounded column : (1) The columns are connected by welding or other methods. (2) concrete and aggregates are put in columns. (3) The columns are constructed during the construction. The error of column straightness is different for each column, and the tilting of columns is shown in one or two directions between floors. The additional loads caused by the error of straightness may give damage to buildings.

  • PDF

A constrained minimization-based scheme against susceptibility of drift angle identification to parameters estimation error from measurements of one floor

  • Kangqian Xu;Akira Mita;Dawei Li;Songtao Xue;Xianzhi Li
    • Smart Structures and Systems
    • /
    • v.33 no.2
    • /
    • pp.119-131
    • /
    • 2024
  • Drift angle is a significant index for diagnosing post-event structures. A common way to estimate this drift response is by using modal parameters identified under natural excitations. Although the modal parameters of shear structures cannot be identified accurately in the real environment, the identification error has little impact on the estimation when measurements from several floors are used. However, the estimation accuracy falls dramatically when there is only one accelerometer. This paper describes the susceptibility of single sensor identification to modelling error and simulations that preliminarily verified this characteristic. To make a robust evaluation from measurements of one floor of shear structures based on imprecisely identified parameters, a novel scheme is devised to approximately correct the mode shapes with respect to fictitious frequencies generated with a genetic algorithm; in particular, the scheme uses constrained minimization to take both the mathematical aspect and the realistic aspect of the mode shapes into account. The algorithm was validated by using a full-scale shear building. The differences between single-sensor and multiple-sensor estimations were analyzed. It was found that, as the number of accelerometers decreases, the error rises due to insufficient data and becomes very high when there is only one sensor. Moreover, when measurements for only one floor are available, the proposed method yields more precise and appropriate mode shapes, leading to a better estimation on the drift angle of the lower floors compared with a method designed for multiple sensors. As well, it is shown that the reduction in space complexity is offset by increasing the computation complexity.

Analytical correction of vertical shortening based on measured data in a RC high-rise building

  • Song, Eun-seok;Kim, Jae-yo
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.527-536
    • /
    • 2020
  • In this study, a process is proposed to calculate analytical correction values for the vertical shortening of all columns on all floors in a high-rise building that minimizes the error between the structural analysis predictions and values measured during construction. The weight ratio and the most probable value were accordingly considered based on the properties of the shortening value analyzed at several points in each construction stage and the distance between these measured points and unmeasured points at which the shortening was predicted. The effective range and shortening value normalization were considered using the column grouping concept. These tools were applied to calculate the error ratio between the predicted and measured values on a floor where a measured point exists, and then determine the estimated error ratio and estimated error value for the unmeasured point using this error ratio. At points on a floor where no measured point exists, the estimated error ratio and the estimated error value were calculated by applying the most probable value considering the weight ratio for the nearest floor where measured points exist. In this manner, the error values and estimated error values can be determined at all points in a structure. Then, the analytical correction value, defined as this error or estimated error value, was applied by adding it to the predicted value. Finally, the adequacy of the proposed correction method was verified against measurements by applying the analytical corrections to all unmeasured points based on the points where the measurement exists.

Measurement of Prefounded Column Erection During Top Down Construction (Top Down 공사의 선기둥 수직도 계측)

  • Rhim, Hong-Chul;Shin, Cheon-Kyun;Kim, Seung-Weon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.6 no.4 s.22
    • /
    • pp.77-83
    • /
    • 2006
  • The purpose of this study is to measure the straightness of prefounded columns during underground construction stages. There are several causes of an error of prefounded column: (1) columns connected by welding or bolting, (2) by placement of concrete and aggregates around columns, (3) movement during construction, and (4) load applied during construction. The error of column straightness is different for each column, and the tilting of columns is shown in one or two directions between floors. The additional loads caused by the error of straightness may give damage to buildings. This paper presents the measurement results of column straightness, and thus providing a basis for further analysis.