• Title/Summary/Keyword: Enzyme-inhibition

Search Result 1,405, Processing Time 0.028 seconds

Taste Characteristics and Functionality of Two Stage Enzyme Hydrolysate from Low-Utilized Longfinned Squid (창오징어 2단 효소분해엑스분의 정미특성 및 기능성)

  • 오광수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.5
    • /
    • pp.782-786
    • /
    • 2001
  • The taste characteristics and functionality of low-utilized small longfinned squid as affected by two stage enzyme hydrolysis were examined. In taste active-components, total free amino acid contents in hot-water and autolytic extract, two stage enzyme hydrolysate (TSEH) of longfinned squid were 2,792.5 mg%, 8,393.8 mg% and 9,186.1 mg%, respectively. The major free amino acids were Pro, Leu, Glu, Tau, Lys, Arg, Phe, Val and Ile. As for quarternary ammonium bases, betaine was the principal component (593.8 mg%) and also contents of TMAO, AMP in longfinned squid TSEH were 234.8% mg% and 51.0 mg%, respectively. The major inorganic ions in TSEH were Na(874.0 mg%), K (398.2 mg%), Cl (1,213.1 mg%) and PO$_4$(995.9 mg%). From the results in sensory tests, TSEH was superior to other extracts on the aspects of taste characteristics such as umami intensity, sweetness, taste harmony and transparency of extract. Also TSEH of longfinned squid revealed very higher Angiotensin-I converting enzyme inhibition ratio (92.1%) than those of hot-water and autolytic extract.

  • PDF

Changes in the Quality Characteristics of Cheonggukjang prepared with Hazelnut (헤이즐넛 첨가에 따른 청국장의 품질 특성 변화)

  • Kim, Jong-Duk;Yi, Young-Hyoun;Lee, Nan-Hee;Kim, Dae-Hyun;Choi, Ung-Kyu
    • The Korean Journal of Food And Nutrition
    • /
    • v.31 no.6
    • /
    • pp.926-932
    • /
    • 2018
  • This research was conducted to investigate the changes in quality characteristics of cheonggukjang fermented with the addition of hazelnut (10, 20, 30 and 40%) including; water content, pH, hydrophilic and lipophilic substances, color, viscosity and angiotensin converting enzyme inhibition activity. There was no significant change in pH with the addition of hazelnut. The water content significantly decreased with the addition of hazelnut. Hazelnut was also found to brighten the color of cheonggukjang. L-value and b-value increased with the addition of cheonggjuang. There was an insignificant change in the a-value. There was a slight decrease in the content of hydrophilic with addition of hazelnuts. Where there was more than 20% addition of hazelnut to soybean, the viscous substance content in cheonggukjang decreased significantly. Angiotensin converting enzyme inhibitory activity increased proportionally to the amount of hazelnut added. It was identified that the addition of 40% of hazelnut made its angiotensin converting enzyme inhibitory activity 10% point higher than that of control. These results suggests that the addition of hazelnut makes it possible to produce cheongkukjang of excellent angiotensin converting enzyme inhibitory activity.

Theoretical Consideration of the Modified Haldane Model of the Substrate Inhibition in the Microbial Growth Processes (미생물 성장 공정에서의 기질 저해에 관한 modified Haldane 모델의 이론적 고찰)

  • Hwang, Young-Bo
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.277-286
    • /
    • 2008
  • This paper deals with the theoretical derivation of the modified Haldane model of the substrate inhibition in the microbial growth processes. Based on the biological concepts of substrate-receptor complex working mechanisms, a new microbial kinetics of N-fold multiplex substrate inhibition and its generalization has been considered theoretically, which is natural expansion of the simple substrate inhibition mechanism in the enzyme reaction. As a result, the modified Haldane model of the substrate inhibition turns out to be a well-designed four-parameter kinetic model with a biological constant of the total substrate inhibition concentration.

Roles of cysteine residues in the inhibition of human glutamate dehydrogenase by palmitoyl-CoA

  • Son, Hyo Jeong;Ha, Seung Cheol;Hwang, Eun Young;Kim, Eun-A;Ahn, Jee-Yin;Choi, Soo Young;Cho, Sung-Woo
    • BMB Reports
    • /
    • v.45 no.12
    • /
    • pp.707-712
    • /
    • 2012
  • Human glutamate dehydrogenase isozymes (hGDH1 and hGDH2) have been known to be inhibited by palmitoyl-CoA with a high affinity. In this study, we have performed the cassette mutagenesis at six different Cys residues (Cys59, Cys93, Cys119, Cys201, Cys274, and Cys323) to identify palmitoyl-CoA binding sites within hGDH2. Four cysteine residues at positions of C59, C93, C201, or C274 may be involved, at least in part, in the inhibition of hGDH2 by palmitoyl-CoA. There was a biphasic relationship, depending on the levels of palmitoyl-CoA, between the binding of palmitoyl-CoA and the loss of enzyme activity during the inactivation process. The inhibition of hGDH2 by palmitoyl-CoA was not affected by the allosteric inhibitor GTP. Multiple mutagenesis studies on the hGDH2 are in progress to identify the amino acid residues fully responsible for the inhibition by palmitoyl-CoA.

Mechanism of Inhibition of Human Cytochrome P450 1A1 and 1B1 by Piceatannol

  • Chae, Ah-Reum;Shim, Jae-Ho;Chun, Young-Jin
    • Biomolecules & Therapeutics
    • /
    • v.16 no.4
    • /
    • pp.336-342
    • /
    • 2008
  • The resveratrol analogue piceatannol (3,5,3',4'-tetrahydroxy-trans-stilbene) is a polyphenol present in grapes and wine and reported to have anti-carcinogenic activities. To investigate the mechanism of anticarcinogenic activities of piceatannol, the effects on CYP 1 enzymes were determined in Escherichia coli membranes coexpressing recombinant human CYP1A1, CYP1A2 or CYP1B1 with human NADPH-P450 reductase. Piceatannol showed a strong inhibition of CYP1A1 and CYP1B1 in a concentration-dependent manner, and $IC_{50}$ of human CYP1A1 and CYP1B1 was 5.8 ${\mu}M$ and 16.6 ${\mu}M$, respectively. However, piceatannol did not inhibit CYP1A2 activity in the concentration of up to 100 ${\mu}M$. Piceatannol exhibited 3-fold selectivity for CYP1B1 over CYP1A1. The mode of inhibition of piceatannol was non-competitive for CYP1A1 and CYP1B1. The result that piceatannol did not inhibit CYP1B1-mediated $\alpha$-naphthoflavone ($\alpha$-NF) metabolism suggests piceatannol may act as a non-competitive inhibitor as well. In human prostate carcinoma PC-3 cells, piceatannol induces apoptosis and prevents Aktmediated signal pathway. Taken together, abilities of piceatannol to induce apoptotic cell death as well as CYP1 enzyme inhibition make this compound a useful tool for cancer chemoprevention.

Physiological Functionality and Nitrite Scavenging Ability of Fermentation Extracts from Pine Needles (솔잎발효추출물의 효소적 저해활성 및 아질산염 소거작용)

  • 홍택근;이용림;임무현;정낙현
    • Food Science and Preservation
    • /
    • v.11 no.1
    • /
    • pp.94-99
    • /
    • 2004
  • Effects on the physiological functionality, such as tyrosinase, xanthine oxidase, angiotensin converting enzyme and Nitrite scavenging ability were also observed by pine needle fermentation extract(PFE) and the difference in the consistency of pine needle ethanol extracts(PE 80, PE 50) was found. In the inhibition effect on tyrosinase, PFE showed 5-38% higher than that of PE 80 and PE 50. In the inhibition on XOase, PFE, PE 80 and PE 50 showed 62.77%, 64.90%, 55.9% respectively. In the inhibition effect on ACE, PFE, PE SO and PE 50 showed 78.02%, 69.82% and 21.75% respectively. Among these, PFE showed the highest ACE inhibition effect. In the inhibition effect on nitrite scavenging ability, the pine needle extracts showed a high effect in pH 3.0. As the result of the research using HPLC for the organic acid, all the samples(PFE, PE 80, PE 50) showed higher contents of the ascorbic acid concerned with the effect of the antioxidative. PFE showed the highest contents of the ascorbic acid.

Chemical Modification and Feedback Inhibition of Arabidopsis thaliana Acetolactate Synthase (아라비돕시스 탈리아나 Acetolactate Synthase의 화학적 변형과 되먹임 방해)

  • Hong, Seong-Taek;Choi, Myung-Un;Shin, Jung-Hyu;Koh, Eun-Hie
    • Applied Biological Chemistry
    • /
    • v.40 no.4
    • /
    • pp.277-282
    • /
    • 1997
  • Acetolactate synthase (ALS) was partially purified from Escherichia coli MF2000/pTATX containing Arabidopsis thaliana ALS gene. The partially purified ALS was examined for its sensitivity toward various modifying reagents such as iodoacetic acid, iodoacetamide, N-ethylmaleimide (NEM), 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), p-chloromercuribenzoic acid (PCMB), and phenylglyoxal. It was found that PCMB inhibited the enzyme activity most strongly followed by DTNB and NEM. Since iodoacetic acid did not compete with substrate pyruvate, it appeared that cysteine is not involved in the substrate binding site. On the other hand, the substrate protected the enzyme partly from inactivation by phenylglyoxal, which might indicate interaction of arginine residue with the substrate. The partially purified enzyme was inhibited by end products, valine and isoleucine, but not by leucine. However, the ALS modified with PCMB led to potentiate the feedback inhibition of all end products. Additionally, derivatives of pyrimidyl sulfur benzoate, a candidate for a new herbicide for ALS, were examined for their inhibitory effects.

  • PDF

Influence of Five Herbal Medicines on Cytochrome P450 3A4 Drug-Metabolizing Enzyme Activity (활혈거어약의 Cytochrome P450 3A4 효소활성에 미치는 영향)

  • Go, Jae-Eon;Hwang, Jin-Woo;Go, Ho-Yeon;Choi, You-Kyung;Park, Jong-Hyung;Ko, Seong-Gyu;Jun, Chan-Yong
    • The Journal of Korean Medicine
    • /
    • v.29 no.4
    • /
    • pp.104-113
    • /
    • 2008
  • Objectives: The aim of this study was to investigate the influence of five herbal medicines on cytochrome P450 (CYP) 3A4 drug-metabolizing enzymes in human liver microsomes. Methods: By using of human liver microsomes, we extracted Cnidium officinale Makino, Rhus verniciflua Stokes, Prunus persica Batsch, Corydalis remota Fisch, Carthamus tinctorius Linne, which are called Hwalhyulgeoouhyak(活血祛瘀藥). Then they were incubated and measured for relative enzyme activity under incubation conditions compared to ketoconazole, which is known as a representative inhibitor of CYP 3A4. Results: We showed that all of five traditional herbal medicines had no inhibition effect of CYP 3A4 at 10, 20, 30, 40, and 50${\mu}g/m{\ell}$ doses in human liver microsomes, although Rhus verniciflua Stokes (RVS) showed a little inhibition as about 95% enzyme activity of control. However, this result was not enough to prove that RVS has a CYP 3A4 inhibition effect. Moreover, we can't confirm that those rates have significant induction effect on CYP 3A4. Conclusions: The result of this study could support that those herbal medicines are more reliable than chemical drugs, even if this is a basic step to prove that result.

  • PDF

Kinetic Properties of the Dye-Coupled Cytoplasmic Polyol Dehydrogenase from Gluconobacter melanogenus (Gluconobacter melanogenus 로부터의 폴리올 탈수소효소에 대한 반응속도론적 특성에 관한 연구)

  • Kang-Wha Kim;Hyun-Jae Lee
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.4
    • /
    • pp.315-321
    • /
    • 1980
  • A steady-state kinetic study on a dye-coupled cytoplasmic polyol dehydrogenase from G. melanogenus was carried by the initial velocity measurements in the direction of the polyol oxidation and the product inhibition by D-fructose. For the initial rate experiments, D-mannitol and D-sorbitol were employed as the specific polyol substrates and 2,6-dichlorophenolin-dophenol (DPIP) as the specific cofactor substrate for the enzyme. When the polyol and DPIP were examined by varying one of substrates and by fixing the second, the corresponding reciprocal plots showed the typical parallel pattern. This suggests that the enzyme from G. melanogenus proceeds by a Ping Pong Bi-Bi mechanism in which the polyol may account as the first reactant-in, and the ketose formed as the first product-out, respectively. The product inhibition patterns obtained by D-fructose (one no-inhibition, one non-competitive, and two competitive) may also provide an additional conformatory evidence for the above mechanism. Based on the kinetic parameters obtained, it was also suggested that the rate-limiting step in the direction of polyol oxidation is associated with the release of the ketose from the Enzyme${\cdot}$Polyol complex.

  • PDF

Potent Inhibition of Human Cytochrome P450 1 Enzymes by Dimethoxyphenylvinyl Thiophene

  • Lee, Sang-Kwang;Kim, Yongmo;Kim, Mie-Young;Kim, Sanghee;Chun, Young-Jin
    • Archives of Pharmacal Research
    • /
    • v.27 no.2
    • /
    • pp.199-205
    • /
    • 2004
  • Cytochrome P450 (P450) 1 enzymes such as P450 1A1, 1A2, and 181 are known to be involved in the oxidative metabolism of various procarcinogens and are regarded as important target enzymes for cancer chemoprevention. Previously, several hydroxystilbene compounds were reported to inhibit P450 1 enzymes and were rated as candidate chemopreventive agents. In this study, we investigated the inhibitory effect of 2-[2-(3,5-dimethoxyphenyl)vinyl]-thiophene (DMPVT), produced from the chemical modification of oxyresveratrol, on the activities of P450 1 enzymes. The inhibitory potential by DMPVT on the P450 1 enzyme activity was evaluated with the Escherichia coli membranes of the recombinant human cytochrome P450 1A1, 1A2, or 1B1 coexpressed with human NADPH-P450 reductase. DMPVT significantly inhibited ethoxyresorufin O-deethylation (EROD) activities with $IC_{50}$ values of 61, 11, and 2 nM for 1A1, 1A2, and 1B1, respectively. The EROO activity in OMBA-treated rat lung microsomes was also significantly inhibited by OMPVT in a dose-dependent manner. The modes of inhibition by DMPVT were non-competitive for all three P450 enzymes. The inhibition of P450 1B1-mediated EROD activity by OMPVT did not show the irreversible mechanism-based effect. The loss of EROD activity in P450 1B1 with OMPVT incubation was not blocked by treatment with the trapping agents such as glutathione, N-acetylcysteine, or dithiothreitol. Taken together, the results suggested DMPVT to be a strong noncompetitive inhibitor of human P450 1 enzymes that should be considered as a good candidate for a cancer chemopreventive agent in humans.