Theoretical Consideration of the Modified Haldane Model of the Substrate Inhibition in the Microbial Growth Processes

미생물 성장 공정에서의 기질 저해에 관한 modified Haldane 모델의 이론적 고찰

  • Hwang, Young-Bo (School of Material Science & Nano Chemical Engineering, Kunsan National University)
  • 황영보 (군산대학교 공과대학 신소재.나노화학공학부)
  • Received : 2008.01.09
  • Accepted : 2008.03.26
  • Published : 2008.06.10

Abstract

This paper deals with the theoretical derivation of the modified Haldane model of the substrate inhibition in the microbial growth processes. Based on the biological concepts of substrate-receptor complex working mechanisms, a new microbial kinetics of N-fold multiplex substrate inhibition and its generalization has been considered theoretically, which is natural expansion of the simple substrate inhibition mechanism in the enzyme reaction. As a result, the modified Haldane model of the substrate inhibition turns out to be a well-designed four-parameter kinetic model with a biological constant of the total substrate inhibition concentration.

본 논문은 미생물 성장 공정에서의 기질 저해에 관한 modified Haldane 모델의 이론적 유도를 다룬다. 생물학적 개념인 기질-수용체 복합체의 작동 메커니즘을 바탕으로 새로운 미생물학적 동특성인 N-중첩된 다중 기질 저해 모델의 유도와 더불어 일반화가 이론적으로 고찰되었는데, 이것은 효소 반응에서의 단순 기질 저해 메커니즘이 자연스럽게 확장된 것이다. 결과적으로, 본 기질 저해에 관한 modified Haldane 모델은 완전저해 기질농도라는 생물학적 상수를 포함하고 있는, 잘 설계된 4-파라메터 동특성 모델임이 밝혀졌다.

Keywords

References

  1. A. Moser, Bioprocess technology, 197, Springer Verlag, New York (1988)
  2. G. Bastin and D. Dochain, On-line Estimation and Adaptive Control of Bioreactors, 37, Elsevier, New York (1990)
  3. V. H. Edwards, Biotechnol. Bioeng., 12, 679 (1970) https://doi.org/10.1002/bit.260120504
  4. J. F. Andrews, Biotechnol. Bioeng., 10, 707 (1968) https://doi.org/10.1002/bit.260100602
  5. J. A. Nelder and R. Mead, Computer J., 7, 308 (1964)
  6. R. Fletcher, Practical methods of optimization, vol.1, unconstrained optimization, John Wiley and Sons, New York (1980)
  7. R. Thatipamala, S. Rohani, and G. A. Hill, Biotechnol. Bioeng., 40, 289 (1992) https://doi.org/10.1002/bit.260400213
  8. P. Pilat and A. Prokop, Biotechnol. Bioeng., 17, 1717 (1975) https://doi.org/10.1002/bit.260171203
  9. K. Han and O. Levenspiel, Biotechnol. Bioeng., 40, 1435 (1988) https://doi.org/10.1002/bit.260401119
  10. M. Wayman and M. C. Tseng, Biotechnol. Bioeng., 18, 383 (1976) https://doi.org/10.1002/bit.260180308
  11. M. C. Tseng and M. Wayman, Can. J. Microbiol., 21, 994 (1975) https://doi.org/10.1139/m75-147
  12. P. V. Kokotovic and R. S. Rutman, Automation and Remote Contr., 26, 168 (1965)