Kinetic Properties of the Dye-Coupled Cytoplasmic Polyol Dehydrogenase from Gluconobacter melanogenus

Gluconobacter melanogenus 로부터의 폴리올 탈수소효소에 대한 반응속도론적 특성에 관한 연구

  • Kang-Wha Kim (Department of Biological Science and Engineering Korea Advanced Institute of Science) ;
  • Hyun-Jae Lee (Department of Biological Science and Engineering Korea Advanced Institute of Science)
  • 김강화 (한국과학원 생물공학과) ;
  • 이현재 (한국과학원 생물공학과)
  • Published : 1980.08.30

Abstract

A steady-state kinetic study on a dye-coupled cytoplasmic polyol dehydrogenase from G. melanogenus was carried by the initial velocity measurements in the direction of the polyol oxidation and the product inhibition by D-fructose. For the initial rate experiments, D-mannitol and D-sorbitol were employed as the specific polyol substrates and 2,6-dichlorophenolin-dophenol (DPIP) as the specific cofactor substrate for the enzyme. When the polyol and DPIP were examined by varying one of substrates and by fixing the second, the corresponding reciprocal plots showed the typical parallel pattern. This suggests that the enzyme from G. melanogenus proceeds by a Ping Pong Bi-Bi mechanism in which the polyol may account as the first reactant-in, and the ketose formed as the first product-out, respectively. The product inhibition patterns obtained by D-fructose (one no-inhibition, one non-competitive, and two competitive) may also provide an additional conformatory evidence for the above mechanism. Based on the kinetic parameters obtained, it was also suggested that the rate-limiting step in the direction of polyol oxidation is associated with the release of the ketose from the Enzyme${\cdot}$Polyol complex.

G. melanogenus로부터 분리한 폴리올 탈수소 효소는 이미 알려진 바의 다른 폴리올 탈수소 효소와는 달리 조효소로서 2,6-dichlorophenolindophenol (DPIP)와 같은 인위적 전자 수용체를 필수로 요구하고 있음으로 이 특수 효소의 반응메카니즘을 반응속도론적 연구를 통하여 규명코저 시도하였으며, 폴리올 산화반응에 대한 초기속도 측정실험과 효소반응 산물인 케토산에 의한 저해 실험을 통하여 이 반응은 Ping-Pong Bi-Bi형의 반응메카니즘으로 진행됨을 확인하였다. 따라서 두 기질 즉 포리올로서 D-mannitol 및 전자수용체로 DPIP가 효소에 의하여 반응이 진행될 경우 D-mannitol이 우선 효소와 작용하며 첫 반응산물로서 해당하는 케토산인 D-fructose가 생성될 것으로 기대되며 이 반응이 전체 반응속도를 조절하는 과정일 것이라고 추측하였다.

Keywords

References

  1. J. Biol. Chem. v.238 G. H. Martinez;H. A. Barker;B. L. Horecker
  2. J. Biol. Chem. v.238 J. M. Edmundowicz;J. C. Wriston, Jr.
  3. Agr. Biol. Chem. v.32 K. Sasajima;M. Isono
  4. Biochim. Biophys Acta v.338 S. D. Varma;J. H. Kinoshita
  5. Biochrm istry v.15 S. T-H Ueng;P. Hartonowicz;C. Lewandoski;J. Keller;M. Holick;E. T. McGuinness
  6. J. Biol. Chem. v.240 K. Kersters;W. A. Wood;J. De Ley
  7. J. Bact. v.125 S. Birkin;M. A. Pisano
  8. Korean J. Biochem. v.13 K. W. Kim;H. J. Lee
  9. J. Biol. Chem. v.237 H. J. Fromm;D. R. Nelson
  10. Biochem istry v.16 S. T-H Ueng;E. T. McGuinness
  11. Acta Chem. Scad. Ser. B v.29 U. Christensen;E. Tuchsen;B. Andersen
  12. J. Amer. Chem. Soc. v.56 H. Lineweaver;D. Burk
  13. Biochim. Biophys Acta v.67 W. W. Cleland
  14. J. Phys. Chem. v.60 E. L. King;C. Altman
  15. Biochim. Biophys. Acta v.25 J. R. Florini;C. S. Vestling