• Title/Summary/Keyword: Environmental catalysis

Search Result 96, Processing Time 0.025 seconds

Verification of Heme Catalytic Cycle with 5-Aminosalicylic Acid and Its Application to Soil Remediation of Polycyclic Aromatic Hydrocarbons

  • Chung, Namhyun;Park, Kapsung;Stevens, David K.;Kang, Guyoung
    • Environmental Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.139-143
    • /
    • 2014
  • Catalytic degradation of pentachlorophenol in soil by heme and hydrogen peroxide has been hypothesized to occur through nonspecific catalytic reactions similar to those involving ligninase. The present study examines the evidence for a heme catalytic mechanism for the oxidation of organic compounds. In the presence of hydrogen peroxide, heme is converted to the ferryl heme radical (Hm-$Fe^{+4{\cdot}}$), which can oxidize organic compounds, such as 5-aminosalicylic acid (5-ASA). A second 5-ASA may later be oxidized by ferryl heme (Hm-$Fe^{+4}$), which reverts to the ferric heme state (Hm-$Fe^{+3}$) to complete the cycle. We believe that this catalytic cycle is involved in the degradation of hazardous pollutants, such as polycyclic aromatic hydrocarbons (PAHs). Remediation via heme catalytic reactions of PAHs in soil from a pole yard was evaluated, and about 96% of PAHs was found to disappear within 42 days after treatment with heme and hydrogen peroxide. In addition, benzo[a]pyrene and six other PAHs were undetectable among a total of 16 PAH compounds examined. Therefore, we propose heme catalysis as a novel technology for the remediation of hazardous compounds in contaminated soil.

Ethylene oxide에 폭로에 의해 형성된 헤모글로빈 adduct의 분석에 관한 연구

  • An, Hye-Sil;Sin, Ho-Sang;Lee, Jin-Heon
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.11a
    • /
    • pp.150-153
    • /
    • 2005
  • A gas chromatography/electron impact mass spectrometric assay method was developed for the determination of Hb-adduct, 2-(hydroxyethyl)valine (HEVal), of ethylene oxide(EO). Globin was separated from hemoglobin by acid iso-propanol and ethyl acetate, then HEVal was isolated as PFPITH-HEVal by Edman degradation. PFPITH-HEVal was silylated with N-methyl-N-(tert-butyl-dimethylsilyl)trifluoroacetamide(MTBDMSTFA)-NH4I (1000:4) under catalysis of dithioerythritol. The detection limit of the assay was 5.8 pmol/g based upon assayed hemoglobin of 0.1g. Two groups of mice were exposed to EO for 0.5 and 1.0 hr/day, respectively at 400ppm during 4 weeks. As the result, the adduct levels increased according to the exposure time with the linearity of 0.7011 and 0.8914, respectively, HEVal was very valuable as biomarker for the exposure of EO. In human, HEVal was analyzed until 8.33 pmol/mg.

  • PDF

Characteristics of ammonia ozonation with bromide (브롬촉매에 의한 암모니아의 오존산화시 특성)

  • 박문숙;양미경
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.2
    • /
    • pp.1-10
    • /
    • 2002
  • Ammonia is used in the manufacture of fertilizers, refrigerants, stabilizers and many household cleaning agents. The wide applications result in ammonia contamination in water. Ammonia can be removed from water by physical, biological, and chemical methods. Especially ozonation is effective in the treatment of water with low concentration of ammonia. Therefore, this study is undertaken to provide kinetic data for the ozonation of ammonia with bromide. The results were as follows; Ammonia oxidized by ozone with bromide catalysis. The denitrification rate of the ammonia increased proportionally to the concentration of bromide, and the overall reaction order was zero. It was also found that the effect of bromide ion concentration on the denitrification can be expressed by Monod type equation and there was no more effect above a proper bromide ion concentration. The reacted ammonia was converted completely to nitrate ion without bromide, but the denitrification of ammonia by ozone was conducted in the presence of bromide.

Effects of Platinum Nanoparticles on the Postnatal Development of Mouse Pups by Maternal Exposure

  • Park, Eun-Jung;Kim, He-Ro;Kim, Young-Hun;Park, Kwang-Sik
    • Environmental Analysis Health and Toxicology
    • /
    • v.25 no.4
    • /
    • pp.279-286
    • /
    • 2010
  • Objectives : Platinum nanoparticles (PNPs) are potentially useful for sensing, catalysis, and other applications in the biological and medical sciences. However, little is known about PNP toxicity. In this study, adverse effects of PNPs on the postnatal development of mouse pubs were investigated. Methods : PNPs (size: 20 nm) were prepared and orally administered to mice during premating, gestation, and lactation periods (0.25 mg/kg, 0.5 mg/kg, and 1 mg/kg). Maternal and pup toxicity were evaluated. Results : PNPs did not affect blood biochemical parameters or mortality in dams during the experimental period. Histopathological signs were not observed and pup number was not different between the control and treated groups. Deformity and stillbirth were not observed in the pups. However, PNPs increased pup mortality and decreased the infant growth rate during the lactation period. Conclusion : PNPs may have adverse effects to the postnatal development of mouse pups.

Weathering of coal and kerogen : implications on the geochmical carbon and oxygen cycle and the environmental geochemical reactions (탄질 유기물과 케로젠의 풍화 : 탄소와 산소의 지화학적 순환 및 환경화학적 반응에 미치는 영향)

  • 장수범
    • Economic and Environmental Geology
    • /
    • v.32 no.1
    • /
    • pp.101-111
    • /
    • 1999
  • Sedimentary organic matter, exposed to continental surficial environment, reacts with oxygen supplied from the atmosphee and forms carbon-containing oxidation products. Knowledge of the rate and mechanisms of sedimentary organic matter weathering is important because it is one of the major controls on atmospheric oxygen level through geologic time. Under the abiological conditions, the oxidation rate of coal organic matter by molecular oxygen is enhanced by the increase of oxygen concentration and temperature. At ambient temperature and pressure, aqueous coal oxidation results in the formation of dissolved $CO_2$ dissolved organic carbon and solid oxidation products which are all quantitatively significant reaction products. The effects of pH, ultraviolet light, and microbial activity on the weathering of sedimentary organic matter are poorly contrained. Based on the results of geochmical and environmental studies, it is believed that the photochemical reaction should play an important role in the decomposition and oxidation of sedimentary organic matter removed from the weathering profile. At higher pH conditions, the production rate of DOC can be accelerated due to base catalysis. These high molecular weight oranic matter can react with man-made pollutants such as heavy metal ions via adsorption/desorption or ion exchange reactions. The effect of microbial activity on the oxidative weathering of sedimentary organic matter is poorly understood and remains to be studied.

  • PDF

Bio-toxicity of Titanium Dioxide Nano Particles (P-25) in Zebrafish Development Stage (Zebrafish 발생기에서 $TiO_2(P-25)$ 나노 입자의 생물 독성)

  • Yeo, Min-Kyeong;Jo, Yoon-Hee
    • Environmental Analysis Health and Toxicology
    • /
    • v.22 no.3
    • /
    • pp.189-196
    • /
    • 2007
  • [ $TiO_2$ ] is widely used because it is non-toxic. Recently, however, nanometer size $TiO_2$ particles (P-25) have been produced and used to increase the photo catalysis efficiency. Nanometer-sized $TiO_2$ is efficient, but due to its small size ($20{\sim}30\;nm$), it can flow into ecosystems and into cells. Thus, it may affect human health. Additionally, $TiO_2$ can produce a second contaminant, OH-radical, which is a health risk for all living organisms during photo degradation reaction. Hence, when nanometer-sized $TiO_2$ flows into natural streams and attaches to living organisms, it will create health risks. We investigated the biological toxicity of this condition in zebrafish embryos. We observed abnormal morphology, hatching rate, and measured the catalase activity to determine anti-oxidation at 100 post fertilization hours. Zebrafish were somewhat affected by $TiO_2$ nanometer sized particles under UV-A (a condition similar to sunlight). Powdered $TiO_2$ is toxic to the zebrafish fly. Even without light, $TiO_2$ particles attached to embryos and flies, having an effect on both.

New insights about coke deposition in methanol-to-DME reaction over MOR-, MFI- and FER-type zeolites

  • Migliori, Massimo;Catizzone, Enrico;Aloise, Alfredo;Bonura, Giuseppe;Gomez-Hortiguela, Luis;Frusteri, Leone;Cannilla, Catia;Frusteri, Francesco;Giordano, Girolamo
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.196-208
    • /
    • 2018
  • The effect of channel-system of zeolite on methanol-to-DME reaction was studied. Results revealed that channels size and topology affect catalyst lifetime, type and location of coke precursors. FER and MFI showed the best resistance towards coke deposition, whilst fast deactivation was observed on MOR. Although the higher concentration and strength of acid sites, FER structure formed a lower coke amount, preferably located within the pores, while coke cluster deposited on the external surface of MOR. Analysis of acid sites distribution and strength was performed during deactivation-regeneration process. Coke location assessment was also supported by molecular simulations.

Modeling the Catalytic Activity and Kinetics of Lipase(Glycerol-Ester Hydrolase)

  • Demirer, Goksel N.;Duran, Metin;Tanner, Robert D.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.1 no.1
    • /
    • pp.46-50
    • /
    • 1996
  • In order to design industrial scale reactors and proceises for multi-phase biocatalytic reactions, it is essential to understand the mechanisms by which such systems operate. To il-lustrate how such mechanisms can be modeled, the hydrolysis of the primary ester groups of triglycerides to produce fatty acids and monoglycerides by lipased (glycerol-ester hydrolase) catalysis has been selected as an example of multiphase biocatalysis. Lipase is specific in its behavior such that it can act only on the hydrolyzed (or emulsified) part of the substrate. This follows because the active center of the enzyme is catalytically active only when the substrate contacts it in its hydrolyzed form. In other words, lipase acts only when it can shuttleback and forth between the emulsion phase and the water phase, presumably within an interphase or boundary layer between these two phases. In industrial applications lipase is employed as a fat splitting enzyme to remove fat stains from fabrics, in making cheese, to flavor milk products, and to degrade fats in waste products. Effective use of lipase in these processes requires a fundamental understanding of its kinetic behavior and interactions with substrates under various environmental conditions. Therefore, this study focuses on modeling and simulating the enzymatic activity of the lipase as a step towards the basic understanding of multi-phase biocatalysis processes.

  • PDF

The Catalytic Effects of o-Iodosobenzoate Ion on Hydrolysis of p-Nitrophenylvalate in ETAMs Solution (ETAMs 용액내에서 p-Nitrophenylvalate의 가수분해반응에 미치는 o-Iodosobenzoate Ion의 촉매효과)

  • Kim, Jeung-Bea
    • Journal of Environmental Science International
    • /
    • v.20 no.1
    • /
    • pp.119-126
    • /
    • 2011
  • In this study, reaction model and reactions rate accelerated by o-iodosobenzoate ion(IB$^{\ominus}$) on hydrolysis reaction of p-nitrophenyl valate(NPV) using ethyl tri-octyl ammonium mesylate(ETAMs) for quaternary ammonium salts, the phase transfer catalysis(PTC) reagent, were investigated. The effect of IB$^{\ominus}$ on hydrolysis reaction rate constant of NPV was weak without ETAMs solutions. Otherwise, in ETAMs solutions, the hydrolysis reactions exhibit higher first order kinetics with respect to the nucleophile, IB$^{\ominus}$, and ETAMs, suggesting that reactions are occurring in small aggregates of the three species including the substrate(NPV), whereas the reaction of NPV with OH$^{\ominus}$ is not catalyzed by ETAMs. Different concentrations of NPV were tested to measure the change of rate constants to investigate the effect of NPV as substrate and the results showed that the effect was weak. This means the reaction would be the first order kinetics with respect to the nucleophile. This behavior for the drastic rate-enhancement of the hydrolysis is referred as 'Aggregation complex model' for reaction of hydrophobic organic ester with o-iodosobenzoate ion(IB$^{\ominus}$) in hydrophobic quarternary ammonium salt(ETAMs) solutions.

Activation of persulfate by UV and Fe2+ for the defluorination of perfluorooctanoic acid

  • Song, Zhou;Tang, Heqing;Wang, Nan;Wang, Xiaobo;Zhu, Lihua
    • Advances in environmental research
    • /
    • v.3 no.3
    • /
    • pp.185-197
    • /
    • 2014
  • Efficient defluorination of perfluorooctanoic acid (PFOA) was achieved by integrating UV irradiation and $Fe^{2+}$ activation of persulfate ($S_2O{_8}^{2-}$). It was found that the UV-$Fe^{2+}$, $Fe^{2+}-S_2O{_8}^{2-}$, and UV-$S_2O{_8}^{2-}$ processes caused defluorination efficiency of 6.4%, 1.6% and 23.2% for PFOA at pH 5.0 within 5 h, respectively, but a combined system of UV-$Fe^{2+}-S_2O{_8}^{2-}$ dramatically promoted the defluorination efficiency up to 63.3%. The beneficial synergistic behavior between $Fe^{2+}-S_2O{_8}^{2-}$ and UV-$S_2O{_8}^{2-}$ was demonstrated to be dependent on $Fe^{2+}$ dosage, initial $S_2O{_8}^{2-}$ concentration, and solution pH. The decomposition of PFOA resulted in generation of shorter-chain perfluorinated carboxylic acids (PFCAs), formic acid and fluoride ions. The generated PFCAs intermediates could be further defluorinated by adding supplementary $Fe^{2+}$ and, $S_2O{_8}^{2-}$ and re-adjusting solution pH in later reaction stage. The much enhanced PFOA defluorination in the UV-$Fe^{2+}-S_2O{_8}^{2-}$ system was attributed to the fact that the simultaneous employment of UV light and $Fe^{2+}$ not only greatly enhanced the activation of $S_2O{_8}^{2-}$ to form strong oxidizing sulfate radicals ($SO{_4}^{\cdot-}$), but also provided an additional decarboxylation pathway caused by electron transfer from PFOA to in situ generated $Fe^{3+}$.