References
- Fang B, Chaudhari NK, Kim MS, Kim JH, Yu JS. Homogeneous deposition of platinum nanoparticles on carbon black for proton exchange membrane fuel cell. J Am Chem Soc 2009; 131(42): 15330-15338. https://doi.org/10.1021/ja905749e
- Cheng H, Xi C, Meng X, Hao Y, Yu Y, Zhao F. Polyethylene glycol-stabilized platinum nanoparticles: the efficient and recyclable catalysts for selective hydrogenation of o-chloronitrobenzene to o-chloroaniline. J Colloid Interface Sci 2009; 336(2): 675-678. https://doi.org/10.1016/j.jcis.2009.04.076
- Hamasaki T, Kashiwagi T, Imada T, Nakamichi N, Aramaki S, Toh K, et al. Kinetic analysis of superoxide anion radical-scavenging and hydroxyl radical-scavenging activities of platinum nanoparticles. Langmuir 2008; 24(14): 7354-7364. https://doi.org/10.1021/la704046f
- Onizawa S, Aoshiba K, Kajita M, Miyamoto Y, Nagai A. Platinum nanoparticle antioxidants inhibit pulmonary inflammation in mice exposed to cigarette smoke. Pulm Pharmacol Ther 2009; 22(4): 340-349. https://doi.org/10.1016/j.pupt.2008.12.015
- Theron AJ, Ramafi GJ, Feldman C, Grimmer H, Visser SS, Anderson R. Effects of platinum and palladium ions on the production and reactivity of neutrophil-derived reactive oxygen species. Free Radic Biol Med 2004; 36(11): 1408-1417. https://doi.org/10.1016/j.freeradbiomed.2004.02.064
- Schmid M, Zimmermann S, Krug HF, Sures B. Influence of platinum, palladium and rhodium as compared with cadmium, nickel and chromium on cell viability and oxidative stress in human bronchial epithelial cells. Environ Int 2007; 33(3): 385-390. https://doi.org/10.1016/j.envint.2006.12.003
- Teranishi T, Hosoe M, Tanaka T, Miyake MB. Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition. J Phys Chem 1999; 103(19): 3818-3827. https://doi.org/10.1021/jp983478m
- Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, et al. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2005; 2: 8. https://doi.org/10.1186/1743-8977-2-8
- Oberdorster G, Overdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005; 113(7): 823-839. https://doi.org/10.1289/ehp.7339
- Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GA, Webb TR. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 2004; 77(1): 117-125.
- Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, et al. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 2005; 207(3): 221-231. https://doi.org/10.1016/j.taap.2005.01.008
- Park EJ, Cho WS, Jeong J, Yi J, Choi K, Park K. Proinflammatory and potential allergic responses resulting from B cell activation in mice treated with multi-walled carbon nanotubes by intratracheal instillation. Toxicology 2009; 259(3): 113-121. https://doi.org/10.1016/j.tox.2009.02.009
- Park EJ, Yoon J, Choi K, Yi J, Park K. Induction of chronic inflammation in mice treated with titanium dioxide nanoparticles by intratracheal instillation. Toxicology 2009; 260(1-3): 37-46. https://doi.org/10.1016/j.tox.2009.03.005
- Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol 2010; 242(3): 263-269. https://doi.org/10.1016/j.taap.2009.10.016
- Snell TW, Hicks DG, Assessing toxicity of nanoparticles using Branchionus manjavacas (Rotifera). Environ Toxicol 2009 PMID: 19760615 https://doi.org/10.1002/tox.20538
- Roh JY, Sim SJ, Yi J, Park K, Chung KH, Ryu DY, et al. Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics, Environ Sci Technol 2009; 43(10): 3933-3940. https://doi.org/10.1021/es803477u
- Tsuchiya T, Oguri I, Yamakoshi YN, Miyata N. Novel harmful effects of [60]fullerene on mouse embryos in vitro and in vivo. FEBS Lett 1996; 393(1): 139-145. https://doi.org/10.1016/0014-5793(96)00812-5
- Yoshida S, Hiyoshi K, Ichinose T, Takano H, Oshio S, Sugawara I, et al. Effect of nanoparticles on the male reproductive system of mice. Int J Androl 2009; 32(4): 337-342. https://doi.org/10.1111/j.1365-2605.2007.00865.x
- Ciencewicki J, Trivedi S, Kleeberger SR. Oxidants and the pathogenesis of lung diseases. J Allergy Clin Immunol 2008; 122(3): 456-468. https://doi.org/10.1016/j.jaci.2008.08.004
- Kim YS, Kim JS, Cho HS, Rha DS, Kim JM, Park JD, et al. Twenty-eight-day oral toxicity, genotoicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 2008; 20(6): 575-583. https://doi.org/10.1080/08958370701874663
- Haider S, Knofler M. Human tumour necrosis factor: physiological and pathological roles in placenta and endometrium. Placenta 2009; 30(2): 111-123. https://doi.org/10.1016/j.placenta.2008.10.012
- Cox SE, Arthur P, Kirkwood BR, Yeboah-Antwi K, Riley EM. Vitamin A supplementation increases ratios of proinflammatory to anti-inflammatory cytokine responses in pregnancy and lactation. Clin Exp Immunol 2006; 144(3): 392-400. https://doi.org/10.1111/j.1365-2249.2006.03082.x
- Shen HM, Pervaiz S. TNF receptor superfamily-induced cell death: redox-dependent execution. FASEB J 2006; 20(10): 1589-1598. https://doi.org/10.1096/fj.05-5603rev
- Torchinsky A, Toder V. TNF alpha in the pathogenesis of diabetes-induced embryopathies: functions and targets. Rev Diabet Stud 2007; 4(4): 200-208. https://doi.org/10.1900/RDS.2007.4.200