Intersexuality of Crassostrea gigas and Ruditapes philippinarum in Southern Coastal Waters of Korea

  • Lee, Jung-Sick (Department of Aqualife Medicine, Chonnam National University) ;
  • Lee, Yeon-Gyu (Faculty of Marine Technology, Chonnam National University) ;
  • Kang, Seung-Wan (Gyeongsangnam-Do Fisheries Resources Research Institute) ;
  • Park, Ji-Seon (Department of Aqualife Medicine, Chonnam National University) ;
  • Lee, Dong-Geun (Department of Aqualife Medicine, Chonnam National University) ;
  • Jeon, Mi-Ae (Department of Aqualife Medicine, Chonnam National University) ;
  • Ju, Sun-Mi (Department of Aqualife Medicine, Chonnam National University)
  • Received : 2010.08.23
  • Accepted : 2010.11.01
  • Published : 2010.12.31

Abstract

Objectives : The aim of this study was to verify the intersexuality of Crassostrea gigas and Ruditapes philippinarum in southern coastal waters of Korea. Methods : Specimens of Crassostrea gigas (n=363) were collected from six areas of Tongyeong, Geoje and Yeosu. Ruditapes philippinarum (n=221) was collected from five areas of Yeosu. The sex ratio and intersexuality were determined after observing gonad preparations. Results : The rate of intersexuality in Crassostrea gigas was 16.25%, with females (24.79%; n=30/121) exhibiting a higher rate than males (11.98%; n=29/242). The rate of intersexuality in Ruditapes philippinarum was 24.43%, with females (37.76%; n=37/98) exhibiting a higher rate than males (13.82%; n=17/123). Conclusions : The results of this study suggest that intersexuality is induced by aquatic pollutants such as endocrine disrupting chemicals (EDCs).

Keywords

References

  1. National Research Council. Risk assessment in the federal government: managing the process. Washington DC: National Academy Press; 1983. p. 192.
  2. Huggett RJ, Kimerle RA, Mehrle PM, Bergman HL. Biomarkers-biochemical, physiological, and histological markers of anthropogenic stress. London: Lewis Publishers; 1992. p. 347.
  3. Siah A, Pellerin J, Amiard JC, Pelletier E, Viglino L. Delayed gametogenesis and progesterone levels in softshell clams (Mya arenaria) in relation to in situ contamination of organotins and heavy metals in the St. Lawrence River (Canada). Comp Biochem Physiol C Toxicol Pharmacol 2003; 135(2): 145-156. https://doi.org/10.1016/S1532-0456(03)00085-1
  4. Iguchi T. Environmental endocrine disruptors. Nippon Rinsho 1998; 56(11): 2953-2962.
  5. Ackermann GE, Schwaiger J, Negele RD, Fent K. Effects of long-term nonylphenol exposure on gonadal development and biomarkers of estrogenicity in juvenile rainbow trout, Oncorhynchus mykiss. Aquat Toxicol 2002; 60(3-4): 203-221. https://doi.org/10.1016/S0166-445X(02)00003-6
  6. De Metrio G, Corriero A, Desantis S, Zubani D, Cirillo F, Deflorio M, et al. Evidence of a high percentage of intersex in the Mediterranean swordfish (Xiphias gladius L.). Mar Pollut Bull 2003; 46(3): 358-361. https://doi.org/10.1016/S0025-326X(02)00233-3
  7. Quinn B, Gagne F, Blaise C, Costello MJ, Wilson JG, Mothersill C. Evaluation of the lethal and sub-lethal toxicity and potential endocrine disrupting effect of nonylphenol on the zebra mussel (Dreissena polymorpha). Comp Biochem Physiol C Toxicol Pharmacol 2006; 142(1-2): 118-127. https://doi.org/10.1016/j.cbpc.2005.11.004
  8. Gauthier-Clerc S, Pellerin J, Blaise C, Gagne F. Delayed gametogenesis of Mya arenaria in the Saguenay fjord (Canada): a consequence of endocrine disruptors? Comp Biochem Physiol C Toxicol Pharmacol 2002; 131(4): 457-467. https://doi.org/10.1016/S1532-0456(02)00041-8
  9. Quinn B, Gagne F, Costello M, McKenzie C, Wilson J, Mothersill C. The endocrine disrupting effect of municipal effluent on the zebra mussel (Dreissena polymorpha). Aquat Toxicol 2004; 66(3): 279-292. https://doi.org/10.1016/j.aquatox.2003.10.007
  10. Chesman BS, Langston WJ. Intersex in the clam Scrobicularia plana: a sign of endocrine disruption in estuaries? Biol Lett 2006; 2(3): 420-422. https://doi.org/10.1098/rsbl.2006.0482
  11. Lee JS, Park JJ. Risk assessment of nonylphenol using sex ratio, sexual maturation, intersex and lipofuscin accumulation of the equilateral venus Gomphina veneriformis (Bivalvia: Veneridae). J Kor Fish Soc 2007; 40(1): 16-23.
  12. Park JJ. Study on the bioindicator of the equilateral venus, Gomphina veneriformis (Bivalvia: Veneridae) chronically exposed to TBT (tributytin chloride) [dissertation]. Yeosu: Chonnam National University; 2008. (Korean)
  13. Ju SM, Park JJ, Lee JS. Induction of intersex and masculinization of the equilateral venus, Gomphina veneriformis (Bivalvia: Veneridae) by zinc. Anim Cells Syst 2009; 13(3): 339-344. https://doi.org/10.1080/19768354.2009.9647227
  14. Holm G, Norrgren L, Linden O. Reproductive and histopathological effects of long-term experimental exposure to bis (tributyltin)oxide (TBTO) on the three-spined stickleback, Gasterosteus aculeatus Linnaeus. J Fish Biol 1991; 38(3): 373-386. https://doi.org/10.1111/j.1095-8649.1991.tb03127.x
  15. Bortone SA, Davis WP. Fish intersexuality as indicator of environmental stress: monitoring fish reproductive systems can serve to alert humans to potential harm. Bioscience 1994; 44: 165-172. https://doi.org/10.2307/1312253
  16. Vigano L, Arillo A, Bottero S, Massari A, Mandich A. First observation of intersex cyprinids in the Po River (Italy). Sci Total Environ 2001; 269(1-3): 189-194. https://doi.org/10.1016/S0048-9697(00)00821-4
  17. Jobling S, Nolan M, Tyler CR, Brighty G, Sumpter JP. Widespread sexual disruption in wild fish. Environ Sci Technol 1998; 32(17): 2498-2506. https://doi.org/10.1021/es9710870
  18. Jobling S, Coey S, Whitmore JG, Kime DE, Van Look KJ, McAllister BG, et al. Wild intersex roach (Rutilus rutilus) have reduced fertility. Biol Reprod 2002; 67(2): 515-524. https://doi.org/10.1095/biolreprod67.2.515
  19. Tyler CR, Routledge EJ. Natural and anthropogenic environmental oestrogens: the scientific basis for risk assessment, oestrogenic effects in fish in English rivers with evidence of their causation. Pure Appl Chem 1998; 70(9): 1795-1804. https://doi.org/10.1351/pac199870091795
  20. Gagne F, Blaise C, Pellerin J, Pelletier E, Douville M, Gauthier-Clerc S, et al. Sex alteration in soft-shell clams (Mya arenaria) in an intertidal zone of the Saint Lawrence river (Quebec, Canada). Comp Biochem Physiol C Toxicol Pharmacol 2003; 134(2): 189-198. https://doi.org/10.1016/S1532-0456(02)00248-X
  21. Matozzo V, Marin MG. Can 4-nonylphenol induce vitellogenin- like proteins in the clam Tapes philippinarum? Environ Res 2005; 97(1): 43-49. https://doi.org/10.1016/j.envres.2004.03.002
  22. Drysdale DT, Bortone SA. Laboratory induction of intersexuality in the mosquitofish, Gambusia affinis, using paper mill effluent. Bull Environ Contam Toxicol 1989; 43(4): 611-617. https://doi.org/10.1007/BF01701943
  23. Gray MA, Metcalfe CD. Induction of testis-ova in Japanese medaka (Oryzias latipes) exposed to p-nonylphenol. Environ Toxicol Chem 1997; 16(5): 1082-1086.
  24. Gimeno S, Komen H, Venderbosch PWM, Bowmer T. Disruption of sexual differentiation in genetic male common carp (Cyprinus carpio) exposed to an alkylphenol during different life stages, Environ Sci Technol 1997; 31(10): 2884-2890. https://doi.org/10.1021/es970215h
  25. Rodgers-Gray TP, Jobling S, Kelly C, Morris S, Brighty G, Waldock MJ, et al. Exposure of juvenile roach (Rutilus rutilus) to treated sewage effluent induces dose-dependent and persistent disruption in gonadal duct development. Environ Sci Technol 2001; 35(3): 462-470. https://doi.org/10.1021/es001225c
  26. Harshbarger JC, Coffey MJ, Young MY. Intersexes in Mississippi River shovelnose sturgeon sampled below Saint Louis, Missouri, USA. Mar Environ Res 2000; 50(1-5): 247-250. https://doi.org/10.1016/S0141-1136(00)00055-6
  27. van Aerle R, Nolan TM, Jobling S, Christiansen LB, Sumpter JP, Tyler CR. Sexual disruption in a second species of wild cyprinid fish (the gudgeon, Gobio gobio) in United Kingdom freshwaters. Environ Toxicol Chem 2001; 20 (12): 2841-2847. https://doi.org/10.1002/etc.5620201225
  28. Lee JS, Kim JW, Park JJ, Ju SM, Park JS, Lee DG, et al. Sex ratio and intersexuality in coastal fishes near industrial complex of Korea. J Fish Pathol 2010; 23(2): 211-219. (Korean)
  29. Gibbs PE, Pascoe PL, Burt GR. Sex change in the female dog-whelk, Nucella lapillus, induced by tributyltin from antifouling paints. J Mar Biol Assoc UK 1988; 68(4): 715-731. https://doi.org/10.1017/S0025315400028824
  30. Horiguchi T, Shiraishi H, Shimizu M, Morita M. Imposex and organotin compounds in Thais clavigera and T. bronniin Japan. J Mar Biol Assoc UK 1994; 74(3): 651-669. https://doi.org/10.1017/S002531540004772X
  31. Kahng SH, Je JG, Oh JR, Shim WJ, Shim JH. Imposex of Thais clavigera and T. luteostoma (Muricidae) as evidence of organotin pollution in Chinhae bay. Korean J Malacol 1996; 12(2): 123-131.
  32. Horiguchi T, Takiguchi N, Cho HS, Kojima M, Kaya M, Shiraishi H, et al. Ovo-testis and disturbed reproductive cycle in the giant abalone Haliotis madaka: possible linkage with organotin contamination in a site of population decline. Mar Environ Res 2000; 50(1-5): 223-229. https://doi.org/10.1016/S0141-1136(00)00071-4
  33. Sadovy Y, Shapiro DY. Criteria for the diagnosis of hermaphroditism in fishes. Copeia 1987; 1: 136-156.
  34. Niimi AJ. Biological and toxicological effects of environmental contaminants in fish and their eggs. Can J Fish Aquat Sci 1983; 40: 306-312. https://doi.org/10.1139/f83-045
  35. Longnecker MP, Rogan WJ, Lucier G. The human health effects of DDT (dichlorodiphenyl trichloroethane) and PCBs (polychlorinated biphenyls) and an overview of organochlorines in public health. Annu Rev Public Health 1997; 18: 211-244. https://doi.org/10.1146/annurev.publhealth.18.1.211
  36. Nilsson R. Endocrine modulators in the food chain and environment. Toxicol Pathol 2000; 28(3): 420-431. https://doi.org/10.1177/019262330002800311
  37. Safe SH. Endocrine disruptors and human health: is there a problem? Environ Health Perspect 2000; 108(6): 487-493.