DOI QR코드

DOI QR Code

Activation of persulfate by UV and Fe2+ for the defluorination of perfluorooctanoic acid

  • Song, Zhou (Key Laboratory of Catalysis and Materials Science, The State Ethnic Affairs Commission and Ministry of Education, College of Chemistry and Materials Science, South-Central University for Nationalities) ;
  • Tang, Heqing (Key Laboratory of Catalysis and Materials Science, The State Ethnic Affairs Commission and Ministry of Education, College of Chemistry and Materials Science, South-Central University for Nationalities) ;
  • Wang, Nan (College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology) ;
  • Wang, Xiaobo (College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology) ;
  • Zhu, Lihua (College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology)
  • Received : 2014.03.16
  • Accepted : 2014.05.31
  • Published : 2014.09.25

Abstract

Efficient defluorination of perfluorooctanoic acid (PFOA) was achieved by integrating UV irradiation and $Fe^{2+}$ activation of persulfate ($S_2O{_8}^{2-}$). It was found that the UV-$Fe^{2+}$, $Fe^{2+}-S_2O{_8}^{2-}$, and UV-$S_2O{_8}^{2-}$ processes caused defluorination efficiency of 6.4%, 1.6% and 23.2% for PFOA at pH 5.0 within 5 h, respectively, but a combined system of UV-$Fe^{2+}-S_2O{_8}^{2-}$ dramatically promoted the defluorination efficiency up to 63.3%. The beneficial synergistic behavior between $Fe^{2+}-S_2O{_8}^{2-}$ and UV-$S_2O{_8}^{2-}$ was demonstrated to be dependent on $Fe^{2+}$ dosage, initial $S_2O{_8}^{2-}$ concentration, and solution pH. The decomposition of PFOA resulted in generation of shorter-chain perfluorinated carboxylic acids (PFCAs), formic acid and fluoride ions. The generated PFCAs intermediates could be further defluorinated by adding supplementary $Fe^{2+}$ and, $S_2O{_8}^{2-}$ and re-adjusting solution pH in later reaction stage. The much enhanced PFOA defluorination in the UV-$Fe^{2+}-S_2O{_8}^{2-}$ system was attributed to the fact that the simultaneous employment of UV light and $Fe^{2+}$ not only greatly enhanced the activation of $S_2O{_8}^{2-}$ to form strong oxidizing sulfate radicals ($SO{_4}^{\cdot-}$), but also provided an additional decarboxylation pathway caused by electron transfer from PFOA to in situ generated $Fe^{3+}$.

Keywords

References

  1. Brillas, E., Sires, I. and Oturan, M.A. (2009), "Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry", Chem. Rev., 109(12), 6570-6631. https://doi.org/10.1021/cr900136g
  2. Dillert, R., Bahnemann, D. and Hidaka, H. (2007), "Light-induced degradation of perfluorocarboxylic acids in the presence of titanium dioxide", Chemosphere, 67(4), 785-792. https://doi.org/10.1016/j.chemosphere.2006.10.023
  3. Eldik, R.V. and Harris, G.M. (1980), "Kinetics and mechanism of the formation, acid-catalyzed decomposition, and intramolecular redox reaction of oxygen-bonded (sulfito) pentanmminecobalt(III) ions in aqueous solution", Inorg. Chem., 19(4), 880-886. https://doi.org/10.1021/ic50206a018
  4. Frigerio, N.A. (1963), "An iodometric method for the macro- and microdetermination of peroxydisulfate", Anal. Chem., 35(3), 412-413. https://doi.org/10.1021/ac60196a046
  5. Hori, H., Hayakawa, E., Einaga, H., Kutsuna, S., Koike, K., Ibusuki, T., Kiatagawa, H. and Arakawa, R. (2004), "Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches", Environ. Sci. Technol., 38(22), 6118-6124. https://doi.org/10.1021/es049719n
  6. Hori, H., Yamamoto, A., Hayakawa, E., Taniyasu, S., Yamashita, N. and Kutsuna, S. (2005), "Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant", Environ. Sci. Technol., 39(7), 2383-2388. https://doi.org/10.1021/es0484754
  7. Hori, H., Nagaoka, Y., Yamamoto, A., Sano, T., Yamashita, N., Taniyasu, S. and Kutsuna, S. (2006), "Efficient decomposition of environmentally persistent perfluorooctanesulfonate and related fluorochemicals using zerovalent iron in subcritical water", Environ. Sci. Technol., 40(3), 1049-1054. https://doi.org/10.1021/es0517419
  8. Hori, H., Yamamoto, A., Koike, K., Kutsuna, S., Osaka, I. and Arakawa, R. (2007), "Photochemical decomposition of environmentallypresisitent short-chain perfluorocarboxylic acids in water mediated by iron(II)/(III) redox reactions", Chemosphere, 68(3), 572-578. https://doi.org/10.1016/j.chemosphere.2006.12.038
  9. Hori, H., Nagaoka, Y., Murayama, M. and Kutsuna, S. (2008), "Efficient decomposition of perfluorocarboxylic acids and alternative fluorochemical surfactants in hot water", Environ. Sci. Technol., 42(19), 7438-7443. https://doi.org/10.1021/es800832p
  10. Huie, R.E. and Clifton, C.L. (1989), "Rate constants for hydrogen abstraction reactions of the sulfate radical, $SO_4^{\bullet{-}}$ alkanes and ethers", Int. J. Chem. Kinet., 21(8), 611-619. https://doi.org/10.1002/kin.550210802
  11. Hurley, M.D., Andersen, M.P.S., Wallington, T.J., Ellis, D.A., Martin, J.W. and Mabury, S.A. (2004), "Atmospheric chemistry of perfluorinated carboxylic acids: reaction with OH radicals and atmospheric lifetimes", J. Phys. Chem. A., 108(4), 615-620. https://doi.org/10.1021/jp036343b
  12. Lau, T.K., Chu, W. and Graham, N.J.D. (2007), "The aqueous degradation of butylated hydroxyanisole by UV/$S_2O_8^{2-}$: study of reaction mechanisms via dimerization and mineralization", Environ. Sci. Technol., 41(2), 613-619. https://doi.org/10.1021/es061395a
  13. Lee, Y.C., Lo, S.L., Chiueh, P.T. and Chang, D.G. (2009), "Efficient decomposition of perfluorocarboxylic acids in aqueous solution using microwave-induced persulfate", Water Res., 43(11), 2811-2816. https://doi.org/10.1016/j.watres.2009.03.052
  14. Lee, Y.C., Lo, S.L., Chiueh, P.T., Liou, Y.H. and Chen, M.L. (2010), "Micromave-hydrothermal decomposition of perfluorooctanoic acid in water by iron-activated persulfate oxidation", Water Res., 44(3), 886-892. https://doi.org/10.1016/j.watres.2009.09.055
  15. Lee, Y.C., Lo, S.L., Kuo, J. and Hsieh, C.H. (2012), "Decomposition of perfluorooctanoic acid by microwave-activated persulfate: effects of temperature, pH, and chloride ions", Front. Environ. Sci. Engin., 6(1), 17-25. https://doi.org/10.1007/s11783-011-0371-x
  16. Li, X.Y., Zhang, P.Y., Jin, L., Shao, T., Li, Z.M. and Cao, J.J. (2012), "Efficient photocatalytic decomposition of perfluorooctanoic acid by indium oxide and its mechanism", Environ. Sci. Technol., 46(10), 5528-5534. https://doi.org/10.1021/es204279u
  17. Luo, W., Zhu, L.H., Wang, N., Tang, H.Q., Cao, M.J. and She, Y.B. (2010), "Efficient removal of organic pollutants with magnetic nanoscaled $BiFeO_3$ as a reusable heterogeneous Fenton-like catalyst", Environ. Sci. Technol., 44(5), 1786-1791. https://doi.org/10.1021/es903390g
  18. Melzer, D., Rice, N., Depledge, M.H., Henley, W.E. and Galloway, T.S. (2010), "Association between serum perfluorooctanoic acid (PFOA) and thyroid disease in the U.S. national health and nutrition examination survey", Environ. Health Persp., 118(5), 686-692. https://doi.org/10.1289/ehp.0901584
  19. Norman, R.O.C., Storey, P.M. and West, P.R. (1970), "Electron spin resonance studies. Part XXV. Reactions of sulphate radical anion with organic compounds", J. Chem. Soc. B, 1087-1095. https://doi.org/10.1039/j29700001087
  20. Panchangam, S.C., Lin, A.Y.C., Tsai, J.H. and Lin, C.F. (2009a), "Sonication-assisted photocatalytic decomposition of perfluorooctanoic acid", Chemosphere, 75(5), 654-660. https://doi.org/10.1016/j.chemosphere.2008.12.065
  21. Panchangam, S.C., Lin, A.Y.C., Shaik, K.L. and Lin, C.F. (2009b), "Decomposition of perfluorocarboxylic acids (PFCAs) by heterogeneous photocatalysis in acidic aqueous medium", Chemosphere, 77(2), 242-248. https://doi.org/10.1016/j.chemosphere.2009.07.003
  22. Pennington, D.E. and Haim, A. (1968), "Stoichiometry and mechanism of the chromium(II)-peroxydisulfate reaction", J. Am. Chem. Soc., 90(14), 3700-3704. https://doi.org/10.1021/ja01016a017
  23. Schroder, H.F. and Meesters, R.J.W. (2005), "Stability of fluorinated surfactants in advanced oxidation processes-a follow up of degradation products using flow injection-mass spectrometry, liquid chromatography-mass spectrometry and liquid chromatography-multiple stage mass spectrometry", J. Chromatogr. A., 1082(1), 110-119. https://doi.org/10.1016/j.chroma.2005.02.070
  24. Tang, H.Q., Xiang, Q.Q., Lei, M., Yan, J.C., Zhu, L.H. and Zou, J. (2012), "Efficient degradation of perfluorooctanoic acid by UV-Fenton process", Chem. Eng. J., 184, 156-162. https://doi.org/10.1016/j.cej.2012.01.020
  25. Vecitis, C.D., Park, H., Cheng, J., Mader, B.T. and Hoffmann, M.R. (2009), "Treament technologies for aqueous perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA)", Front. Sci. Eng. China., 3(2), 129-151.
  26. Vecitis, C.D., Wang, Y., Cheng, J., Park, H., Mader, B.T. and Hoffmann, M.R. (2010), "Sonochemical degradation of perfluorooctanesulfonate in aqueous film-forming foams", Environ. Sci. Technol., 44(1), 432-438. https://doi.org/10.1021/es902444r
  27. Walters, M.W. and Wallace, K.B. (2010), "Urea cycle gene expression is suppressed by PFOA treatment in rats", Toxicol. Lett., 197(1), 46-50. https://doi.org/10.1016/j.toxlet.2010.04.027
  28. Wang, Y., Zhang, P.Y., Pan, G. and Chen, H. (2008), "Ferric ion mediated photochemical decomposition of perfluorooctanoic acid (PFOA) by 254 nm UV light", J. Hazard. Mater., 160(1), 181-186. https://doi.org/10.1016/j.jhazmat.2008.02.105
  29. Wang, T., Wang, Y.W., Liao, C.Y., Cai, Y.Q. and Jiang, G.B. (2009), "Perspectives on the inclusion of perfluorooctane sulfonate into the stockholm convention on persistent organic pollutants", Environ. Sci. Technol., 43(14), 5171-5175. https://doi.org/10.1021/es900464a

Cited by

  1. Photocatalytic degradation of perfluorooctanoic acid and perfluorooctane sulfonate in water: A critical review vol.328, 2017, https://doi.org/10.1016/j.cej.2017.07.076
  2. Reductive and Oxidative UV Degradation of PFAS-Status, Needs and Future Perspectives vol.13, pp.22, 2021, https://doi.org/10.3390/w13223185