• Title/Summary/Keyword: Engine Signature Analysis

Search Result 20, Processing Time 0.023 seconds

Analysis and Evaluation Study on Diesel Generator Engine Operation Signature (디젤발전기 엔진 운전상태 분석 및 평가방법에 대한 연구)

  • Park, J.H.;Choi, K.H.;Lee, S.G.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.82-88
    • /
    • 2009
  • The purpose of this paper is to provide technical background, techniques and actual diesel engine signature analysis evaluation result. Engine signature analysis(ESA) is a process for monitoring the material condition of diesel engine using external sensors, eliminating the need to periodically disassemble the engine. ESA is also used to balanced the engine. Engine balancing is the process of tuning the engine so that all cylinders carry equal load. ESA is a useful tool to non-intrusively determine the operability and performance and assessment of the material condition of internal component of a diesel engine.

  • PDF

A Study on the Effect of Engine Nozzle Configuration on the Plume IR Signature (엔진 노즐 형상이 Plume 적외선 신호에 미치는 영향에 관한 연구)

  • An, Sung-Yong;Kim, Won-Cheol;Oh, Seong-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.8
    • /
    • pp.688-694
    • /
    • 2012
  • A study on the effect of engine nozzle configuration on the engine plume Infra-red (IR) signature characteristics is performed. Configuration design of an engine nozzle with high aspect ratio to reduce IR signature level and a cylindrical nozzle which is typically used for conventional aircraft which does not require IR signature reduction is performed. And CFD analysis for the two nozzles is performed to compare the flowfields characteristics of the two nozzles. Finally IR signature analysis for the two nozzles is accomplished to calculate the total intensity level at mid-wave infra-red and investigate the differences of IR signature characteristics between the two nozzles.

Measurement of Infrared Signature according to the Operating Condition and Location of a Small Scale Engine (축소형 제트 엔진의 구동 조건 및 측정 위치에 따른 적외선 신호 측정 연구)

  • Gu, Bonchan;Jegal, Hyunwook;Baek, Seung Wook;Choi, Seongman;Kim, Won Cheol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.596-597
    • /
    • 2017
  • In this study, the measurements of infrared (IR) signature were carried out using a small scale engine with the variation of the engine performance and target positions in the exhaust plume. The operating conditions of the engine were kept constant for each test, and the measured positions were sapced at refular intervals from the nozzle exit. The measured IR signature was calibrated by using a blackbody. The results of infrared signature measurements are shown in three bands for analysis of spectral characteristics. As the engine performance decreased and the distance from the nozzle exit increased, the IR signature decreased and the level of decrease varied according to the bands.

  • PDF

Measurement and Validation of Infrared Signature from Exhaust Plume of a Micro-Turbo Engine (마이크로 터보 엔진 배기 플룸에서의 적외선 신호 측정 및 검증)

  • Gu, Bonchan;Baek, Seung Wook;Jegal, Hyunwook;Choi, Seongman;Kim, Won Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.12
    • /
    • pp.1054-1061
    • /
    • 2016
  • Development of an accurate infrared signature (IR) measurement system is expected to contribute in the development of low observable technology and the spectroscopic analysis of electromagnetic radiation. Application of a spectroradiometer (SR) allows for the measurement of detailed infrared signature from the exhaust plume due to its own heat source. Establishment of a measurement system using a micro-turbo engine is intended to simulate the modelling of the aircraft plume. The engine was installed on a test stand to measure the engine performance. The IR signature was measured by placing the SR perpendicular to the axis line of the exhaust plume. Reference data from the blackbody were also measured to calibrate the raw data, and the infrared signature of the background was also measured for comparison with that of the plume. The calibrated spectral radiance was obtained through the data reduction process and the results were analyzed in specific bands. The experiments revealed that the measurement system established here showed sufficient performance for further comprehensive analysis.

COMPUTATIONAL INVESTIGATION OF NOZZLE FLOWFIELDS AT VARIOUS FLIGHT CONDITIONS FOR AIRCRAFT INFRARED SIGNATURE ANALYSIS (항공기 IR 신호 분석을 위한 다양한 비행 조건에서의 노즐 열유동장 해석)

  • Chun, S.H.;Yang, Y.R.;Moon, H.;Myong, R.S.;Cho, T.H.
    • Journal of computational fluids engineering
    • /
    • v.16 no.3
    • /
    • pp.15-21
    • /
    • 2011
  • Aerothermodynamic flowfields of aircraft engine nozzles are computationally investigated at various flight conditions for infrared signature analysis. A mission profile of subsonic unmanned combat aerial vehicle is considered for the case study and associated engine and nozzles are selected through a performance analysis. Computational results of nozzle and plume flowfields using a density-based CFD code are analyzed in terms of thrust, maximum temperature, length and optical thickness of plume. It is shown that maximum temperature, length, and optical thickness of nozzle plume increase for lower altitude and higher Mach number.

COMPUTATIONAL INVESTIGATION OF NOZZLE FLOWFIELD IN A MICRO TURBOJET ENGINE AND ITS SCALING CHARACTERISTICS (마이크로 터보제트 엔진 노즐 유동장에 관한 CFD 전산해석 및 스케일링 특성 연구)

  • Lee, H.J.;An, C.H.;Myong, R.S.;Choi, S.M.;Kim, W.C.
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.43-50
    • /
    • 2017
  • Thermal flowfield of a micro turbojet engine was computationally investigated for exhaust nozzles with different aspect ratio and curvature. Special attention was paid to maximum and average temperature of the nozzle surface and the exhaust nozzle plume. The IR signatures of the micro turbojet engine nozzle were then calculated through the narrow-band model based on thermal flowfield data obtained through CFD analysis. Finally, in order to check the similarity of thermal flowfields and IR signature of the sub-scale micro turbojet engine model and the full-scale UCAV propulsion system, several non-dimensional parameters associated with temperature and optical property of plume were introduced. It was shown that, in spite of some differences in actual values of non-dimensional parameters, the scaling characteristics on spectral feature of IR signature and effects of aspect ratio and curvature of nozzle configuration remain similar in sub-scale and full-scale cases.

Numerical Analysis of Nozzle Plume Flow-Fields at Various Flight Conditions for Infrared Signature Investigation (IR 신호 분석을 위한 비행 조건에 따른 노즐 열유동장 해석)

  • Chun, S.H.;Yang, Y.R.;Moon, H.;Kim, J.Y.;Myong, R.S.;Cho, T.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.601-604
    • /
    • 2011
  • Plume flow-fields of aircraft nozzles are numerically investigated at various flight conditions for infrared signature analysis. A mission profile of subsonic unmanned combat aerial vehicle is considered for the requirement of each mission, associated engine and nozzles are selected through a performance analysis. Numerical results of nozzle plume flow-fields using a CFD code are analyzed in terms of thrust, maximum temperature. It is shown that maximum temperature increase for lower altitude and higher Mach number.

  • PDF

Automatic Algorithm for Extracting the Jet Engine Information from Radar Target Signatures of Aircraft Targets (항공기 표적의 레이더 반사 신호에서 제트엔진 정보를 추출하기 위한 자동화 알고리즘)

  • Yang, Woo-Yong;Park, Ji-Hoon;Bae, Jun-Woo;Kang, Seong-Cheol;Kim, Chan-Hong;Myung, Noh-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.6
    • /
    • pp.690-699
    • /
    • 2014
  • Jet engine modulation(JEM) is a technique used to identify the jet engine type from the radar target signature modulated by periodic rotation of the jet engine mounted on the aircraft target. As a new approach of JEM, this paper proposes an automatic algorithm for extracting the jet engine information. First, the rotation period of the jet engine is yielded from auto-correlation of the JEM signal preprocessed by complex empirical mode decomposition(CEMD). Then, the final blade number is estimated by introducing the DM(Divisor-Multiplier) rule and the 'Scoring' concept into JEM spectral analysis. Application results of the simulated and measured JEM signals demonstrated that the proposed algorithm is effective in accurate and automatic extraction of the jet engine information.

Sensitivity Study on the Infra-Red Signature of Naval Ship According to the Composition Ratio of Exhaust Plume (폐기가스 조성 비율이 적외선 신호에 미치는 영향 연구)

  • Cho, Yong-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.103-110
    • /
    • 2018
  • Infrared signatures emitted from naval ships are mainly classified into internal signatures generated by the internal combustion engine of the ship and external signatures generated from the surface of the ship heated by solar heat. The internal signatures are also affected by the chemical components ($CO_2$, $H_2O$, CO and soot) of the exhaust plumes generated by the gas turbine and diesel engine, which constitute the main propulsion system. Therefore, in this study, the chemical composition ratios of the exhaust plumes generated by the gas turbines and diesel engines installed in domestic naval ships were examined to identify the chemical components and their levels. The influence of the chemical components of the exhaust plumes and their ratios on the infrared signatures of a naval ship was investigated using orthogonal arrays. The infrared signature intensity of the exhaust plumes calculated using infrared signature analysis software was converted to the signal-to-noise ratio to facilitate the analysis. The signature analysis showed that $CO_2$, soot and $H_2O$ are the major components influencing the mid-wave infrared signatures of both the gas turbine and diesel engine. In addition, it was confirmed that $H_2O$ and $CO_2$ are the major components influencing the long-wave infrared signatures.

Computational Investigation of the Effect of UAV Engine Nozzle Configuration on Infrared Signature (무인항공기 노즐 형상 변화에 따른 IR 신호 영향성 연구)

  • Kang, Dong-Woo;Kim, June-Young;Myong, Rho-Shin;Kim, Won-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.10
    • /
    • pp.779-787
    • /
    • 2013
  • The effects of various nozzle configurations on infrared signature are investigated for the purpose of analysing the infrared signature level of aircraft propulsion system. A virtual subsonic aircraft is selected and then a circular convergent nozzle, which meets the mission requirements, is designed. Convergent nozzles of different configurations are designed with different geometric profiles. Using a compressible Navier-Stokes-Fourier CFD code, an analysis of thermal flow field and nozzle surface temperature distribution is conducted. From the information of plume flow field and nozzle surface temperature distribution, IR signature of plume and nozzle surface is calculated through the narrow-band model and the RadThermIR code. Finally, qualitative information for IR signature reduction is obtained through the analysis of the effects of various nozzle configurations on IR signature.