DOI QR코드

DOI QR Code

Computational Investigation of the Effect of UAV Engine Nozzle Configuration on Infrared Signature

무인항공기 노즐 형상 변화에 따른 IR 신호 영향성 연구

  • Kang, Dong-Woo (Department of Aerospace and System Engineering and Research Center for Aircraft Parts Technology, Gyeongsang National University) ;
  • Kim, June-Young (Department of Aerospace and System Engineering and Research Center for Aircraft Parts Technology, Gyeongsang National University) ;
  • Myong, Rho-Shin (Department of Aerospace and System Engineering and Research Center for Aircraft Parts Technology, Gyeongsang National University) ;
  • Kim, Won-Cheol (Agency for Defense Development)
  • Received : 2013.06.22
  • Accepted : 2013.09.23
  • Published : 2013.10.01

Abstract

The effects of various nozzle configurations on infrared signature are investigated for the purpose of analysing the infrared signature level of aircraft propulsion system. A virtual subsonic aircraft is selected and then a circular convergent nozzle, which meets the mission requirements, is designed. Convergent nozzles of different configurations are designed with different geometric profiles. Using a compressible Navier-Stokes-Fourier CFD code, an analysis of thermal flow field and nozzle surface temperature distribution is conducted. From the information of plume flow field and nozzle surface temperature distribution, IR signature of plume and nozzle surface is calculated through the narrow-band model and the RadThermIR code. Finally, qualitative information for IR signature reduction is obtained through the analysis of the effects of various nozzle configurations on IR signature.

항공기 추진 시스템의 IR 피탐지성 감소 연구를 위해 항공기 노즐형상 변화에 따른 IR 신호의 영향성을 연구하였다. 이를 위해 가상의 아음속 무인기를 선정하고, 임무분석 및 성능 해석을 통해 엔진을 결정한 후 전체 임무를 만족시키는 원형 노즐을 설계하였다. 또한 다수의 설계변수를 적용하여 다양한 형상의 노즐을 설계하였다. 압축성 CFD 코드를 이용하여 열유동장 및 노즐표면 온도를 분석하였다. 또한 열유동장 해석 결과를 바탕으로 narrow-band 모델과 RadThermIR을 기반으로 하여 항공기 플룸 및 노즐표면 IR 신호를 계산하였다. 계산된 플룸 및 고체 IR신호를 분석, 비교하여 항공기 IR 신호 특성에 관한 정성적 정보를 도출하였다.

Keywords

References

  1. Ball, R. E., The Fundamentals of Aircraft Combat Survivability Analysis and Design, AIAA Education Series, 2nd Edition, 2003.
  2. Survivability/Vulnerability Information Analysis Center, www.bahdayton.com/surviac/
  3. Simmons, F. S., Rocket Exhaust Plume Phenomenology, The Aerospace Press, 2000.
  4. Anonym, "Self-Protection Upgrade for TH98," Stealth Conference UK, 2007.
  5. Hudson, R. D. Jr., Infrared System Engineering, Wiley, 1969.
  6. Lynch, D. Jr., Introduction to RF Stealth, SciTech Publishing Inc., 2004.
  7. Mahulikar, S. P., Sonawane, H. R., Rao, G. A., "Infrared Signature Studies of Aerospace Vehicles," Progress in Aerospace Sciences, Vol. 43, 2007, pp. 218-245. https://doi.org/10.1016/j.paerosci.2007.06.002
  8. Thompson, J., Birk, A. M., "Design of an Infrared Signature Suppressor for the Bell 205(UH-1H) Helicopter Part 1: Aerothermal Design," 11th CASI Propulsion Symposium, 2010.
  9. Mahulikar, S. P., Rao, G. A., Kolhe, P. S., "Infrared Signatures of Low Flying Aircraft and their Rear Fuselage Skin's Emissivity Optimisation," AIAA Journal of Aircraft, Vol. 43, No. 1, 2006, pp. 226-232. https://doi.org/10.2514/1.15365
  10. Hallberg, T., Niinimaki-Heikkila, T., Hedborg-Karlsson, E., Salonen, P. S., Nilsson, C., Janis, A., "Development of Low-emissive Camouflage Paint ; Final Report," Scientific Report, 2005.
  11. An, S. Y., Kim, W. C., Oh, S. H., "A Study on the Effect of Engine Nozzle Configuration on the Plume IR Signature", Journal of The Korean Society for Aeronautical & Space Sciences, Vol. 40, No. 8, 2012, pp. 688-694. https://doi.org/10.5139/JKSAS.2012.40.8.688
  12. Lee, K. J., Baek, S. W., Lee, S. N., Kim, M. Y., Kim, W. C., "Effects of Nozzle Characteristics on the Rear Fuselage Temperature Distribution", Journal of The Korean Society for Aeronautical & Space Sciences, Vol. 39, No. 12, 2011, pp. 1225-1348. https://doi.org/10.5139/JKSAS.2011.39.12.1141
  13. Chun, S. H., Yang, Y. R., Moon, H., Myong, R. S., Cho, T. H., "Computational Investigation of Nozzle Flowfields at Various Flight Conditions for Aircraft Infrared Signature Analysis", Journal of Computational Fluids Engineering, Vol. 16, No. 3, 2011, pp. 15-21. https://doi.org/10.6112/kscfe.2011.16.3.015
  14. Kim, J. Y., Chun, S. H., Myong, R. S., Kim, W. C., "Computational Investigation of the Effect of Various Flight Conditions on Plume Infrared Signature", Journal of The Korean Society for Aeronautical & Space Sciences, Vol. 41, No. 3, 2013, pp. 185-193. https://doi.org/10.5139/JKSAS.2013.41.3.185
  15. Mattingly, J. D., Heiser, W. H., Pratt, D. T., Aircraft Engine Design, AIAA Education Series, 2nd Edition, 2002.
  16. CFD-FASTRAN, ESI, 2011.
  17. RadThermIR: Thermal and Infrared Simulation Software, Thermo Analytics Inc., 2006.
  18. 1st AIAA Propulsion Aerodynamics Workshop, http://aiaapaw.tecplot.com/index.html/, 2012.
  19. Grosshandler, W. L., "RADCAL : A Narrow-Band Model for Radiation Calculations in a Combustion Environment," National Technical Information Service, TN 1402, 1993.

Cited by

  1. Investigation of the Effects of UAV Nozzle Configurations on Aircraft Lock-on Range vol.43, pp.3, 2015, https://doi.org/10.5139/JKSAS.2015.43.3.204
  2. Analysis of Plume Infrared Signatures of S-Shaped Nozzle Configurations of Aerial Vehicle vol.53, pp.6, 2016, https://doi.org/10.2514/1.C033685
  3. Investigation of Aircraft Plume IR Signature for Various Nozzle Configurations and Atmospheric Conditions vol.42, pp.1, 2014, https://doi.org/10.5139/JKSAS.2014.42.1.10