• Title/Summary/Keyword: Engine Safety

Search Result 655, Processing Time 0.034 seconds

Safety Estimation of Engine Lubrication System using Tilting Test Rig (Tilting Test Rig를 이용한 엔진 윤활 시스템 안정성 평가)

  • 윤정의;전문수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.1-6
    • /
    • 2002
  • Engine lubrication system is generally affected by vehicle driving conditions, which are composed of acceleration, braking deceleration and accelerating during cornering. The major reason is due to the oil pan system in which oil is directly influenced by inertia farce caused by vehicle driving conditions. Therefore, to confirm safety of engine lubrication system inertia farce effects are also considered in the developing state. For the purpose, we have carried the engine tilting tests using ourselves made test rig. Verifying the test results we also measured the inertia effects on the engine lubrication system using the circular tuning and slalom test with vehicle. Through the comparison study between two kinds of results we obtained that the engine tilting test rig was very useful to confirm the safety evaluation of engine lubrication system.

An Experimental Study on the Safety Standard of Electronic Throttle Control System (전자식 가속제어장치 안전기준에 대한 실험적 고찰)

  • Yun, Kyungcheol;Yong, Geejoong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.1
    • /
    • pp.48-54
    • /
    • 2019
  • Optimal engine control is needed to cope with the global environmental regulations that are globally enforced. For optimum engine control, the electronic throttle control system (ETCS) is a prerequisite. Automotive makers are having an effect on reducing emissions and improving fuel economy by applying ETCS which is designed to secure stability. The ETCS controls the output of the throttle valve by passing the output value of the accelerator position sensor (APS) to the engine control unit (ECU). In this study, the authors investigated the safety standards of domestic and overseas accelerator control system and tried to understand how the air flow control affects the engine output by replacing the throttle. The authors suggest an improvement proposal of safety standard based on the result of driving evaluation by various modes.

Safety Assessment for Aircraft Engines (항공기 엔진 안전성 평가기술)

  • Lee, Kang-Yi;Yoo, Seung-Woo;Kim, Kui-Soon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.6
    • /
    • pp.26-34
    • /
    • 2007
  • The efforts to develop high performance aircraft engines are successively progressed with development of recent technology. The reliability of individual parts and the safety of engine systems are reduced if high efficiency components, high strength materials, and precise controls are applied to the engine with complexity to increase engine performance. In this paper, the regulation requirements and assessment technique for aircraft engine safety are considered, and the result of safety assessment on a turbine case cooling system of high efficiency turbofan engine is presented.

Finite Element Analysis of Thermal Fatigue Safety for a Heavy-Duty Diesel Engine (대형디젤엔진의 열적 피로안전도 분석을 위한 유한요소해석)

  • 조남효;이상업;이상규;이상헌
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.122-129
    • /
    • 2004
  • Finite element analysis was performed to analyze structural safety of a new heavy-duty direct injection diesel engine. A half section of the in-line 6-cylinder engine was selected as a computational domain. A mapping method was used to project heat transfer coefficients from CFD results of engine coolant flow onto the FE model. The accurate setting of thermal boundary condition on the FE model was expected to result in improved prediction of temperature, cylinder bore distortion, and stresses. Characteristics of high cycle fatigue were investigated by assuming the engine was operated under the following five loading conditions repeatedly; assembly force, assembly force with thermal loading, alternating maximum gas pressure loading at each cylinder combined with assembly force and thermal loading. Distribution of fatigue safety factor was calculated by using it Haigh diagram in which the maximum and the minimum stresses were selected from the five loading cases.

Safety Factor Analysis of Range-Shift on Multi-Purpose Agricultural Implement Machinery (다목적 농작업 기계 변속기 부변속 안전율 분석)

  • Moon, Seok Pyo;Baek, Seung Min;Lee, Nam Gyu;Park, Seong Un;Choi, Young Soo;Choi, Chang Hyun;Kim, Yong Joo
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.141-151
    • /
    • 2020
  • The aim of this study was to analyze the safety factor of range-shift gear pairs on multi-purpose agricultural implement machinery for an optimal design of a transmission system. Gear-strengths such as bending and contact stress and safety factors were analyzed under three load conditions: an equivalent engine torque at plow tillage, a rated engine torque, and the maximum engine torque. Root and contact safety factor were calculated to be 3.88, 5.14, 2.24, 2.11, 2.21, 0.99 and 0.78, 0.94, 0.65, 0.68, 0.84, 0.85, respectively, under equivalent engine torque condition at the plow tillage. The root and contact safety factor were calculated to be 1.91, 2.53, 1.10, 1.04, 1.07, 0.48 and 0.55, 0.66, 0.46, 0.48, 0.59, 0.59, respectively, under rated engine torque condition. The root and contact safety factor were calculated to be 1.60, 2.11, 0.92, 0.87, 0.90, 0.40 and 0.51, 0.61, 0.42, 0.44, 0.54, 0.54, respectively, under the maximum engine torque condition. The multi-purpose agricultural implement machinery could be conducted under plow tillage operation. However, gear specifications for tooth surface need modification because the gear surface would be broken at all driving conditions as safety factors are lower than 1.

A Study on the Safety Management Methods of Micro-Gas Engine Combined Heat and Power System (소형 가스엔진 열병합발전 시스템의 안전관리 방안에 관한 연구)

  • Kim, So-Hyun;Kim, Min-Woo;Lee, Eun-Kyung;Lee, Jung-Woon
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.76-89
    • /
    • 2018
  • The distribution of the combined heat and power system is active as a solution to the instability of energy supply and environmental pollution caused by continuous industrial development. In Korea, the safety standards for combined heat and power system using a gas engine are insufficient therefore the study on this is needed. In this study, the safety performance and structural/material assessment items of domestic and international standards applied to the combined heat and power system were analyzed to carry out a standardization study on safety performance applicable to 20 kW gas engine combined heat and power system. In addition, the safety performance assessment (plan) of the gas engine combined heat and power system was derived by performing risk analysis and risk assessment using HAZOP. Assessment items include engine ignition systems related to safety performance, piping tight performance, watering and temperature rise performance, combustion performance, electrical efficiency, thermal efficiency, overall efficiency and humidity performance. Gas and water pipes, gas control and shut-off valves, durability, heat resistance, and cold resistance of metal or non-metallic materials related to the structure and materials of the gas engine combined heat and power systems.

Vibration Control of a Semi-Active Engine Mount Using an ER Fluid (ER 유체를 이용한 반능동형 엔진마운트의 진동제어)

  • 전영식
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.47-56
    • /
    • 1997
  • This paper presents the vibration control of an engine mount featuring an ER(electro-rheological) fluid. The Bingham properties of the ER fluid to be employed to the ER engine mount are experimentally obtained through Coeutte type viscometer. The ER engine mount is devised ant its governing equation is derived. After evaluating the performance of the ER engine mount on the basis of the mathematical model, the novel type of the ER engine mount is then designed and manufactured. The electric field-dependent transmissibility of the ER engine mount is evaluated by changing the particle concentration and the electrode gap size. To investigate the control performance of the ER engine mount, neuro-control algorithm is adopted. It is shown that the proposed ER engine mount has prominent capabilities of controlling the damping force by tuning the electric fields and excellent vibration isolation performance.

  • PDF

A Study on Characteristics of Knocking in Gasoline Engine through ECU Control (ECU 제어를 통한 가솔린 엔진의 노킹 특성에 관한 연구)

  • Yang, Hyun-Soo;Lim, Ju-Hun;Chun, Dong-Jun
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.3
    • /
    • pp.109-115
    • /
    • 2008
  • A burning principle in gasoline engine is the one of being burned, by which a mixer in air and gasoline enters a combustion chamber and causes a spark in the proper timing. This is formed, by which ECU controls the fuel-injection volume and the fuel-injection timing, and determines the performance of engine. The purpose of this study is to test the characteristics on knocking in gasoline engine with the knocking-sensor equipment and to research into the characteristics in knocking while directly controling the optimal igniting timing and the fuel-injection timing through engine ECU. Given controlling ECU by grasping the characteristics in knocking, which becomes the most problem in the engine tuning market, the tuning in a true sense will be formed in gasoline engine.

Experimental study on the performance of a turbocompound diesel engine with variable geometry turbocharger

  • Yin, Yong;Liu, Zhengbai;Zhuge, Weilin;Zhao, Rongchao;Zhao, Yanting;Chen, Zhen;Mi, Jiao
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.332-337
    • /
    • 2016
  • Turbocompounding is a key technology to satisfy the future requirements of diesel engine's fuel economy and emission reduction. A turbocompound diesel engine was developed based on a conventional 11-Liter heavy-duty diesel engine. The turbocompound system includes a power turbine, which is installed downstream of a Variable Geometry Turbocharger (VGT) turbine. The impacts of the VGT rack position on the turbocompound engine performance were studied. An optimal VGT control strategy was determined. Experimental results show that the turbocompound engine using the optimal VGT control strategy achieves better performance than the original engine under all full load operation conditions. The averaged and maximum reductions of the brake specific fuel consumption (BSFC) are 3% and 8% respectively.

A Study on Analysis of J85 Engine V.G. Actuator Arm Shaft Crack

  • Hwang, Young-Ha;Son, Kyung-Sug;Kim, Tae-Gu
    • International Journal of Safety
    • /
    • v.8 no.1
    • /
    • pp.6-9
    • /
    • 2009
  • The crack in a J85 engine V.G. actuator arm shaft for a bell crank on the engine compressor was investigated. The crack was observed in twenty two shafts during the inspection of 238 shafts. The failure analysis of shaft cracks was performed by chemical composition analysis using ICP(Inductively Coupled Plasma) and by fracture surface and microstructure analysis using FE-SEM and optical microscope. The crack initiated from the top and bottom and propagated to the center along the grain boundaries. From the chemical composition analysis, the fractography of the fracture surface and the microstructure, it was found that the failure mechanism of the shafts is the inclusion-related intergranular decohesion crack. The inclusion was found out from MnS particle by EDS(Energy Dispersive Spectroscopy). The crack initiated MnS inclusion in the grain boundary and propagated with the increase of applied shear stress during long operation. In order to prevent the fracture, NDI(Nondestructive inspection) is needed periodically as recommended.